
P R O D U C T S S U P P O R T C O N TA C T search 🔍

→ TouchOSC Manual

Introduction

TouchOSC is a modular control surface toolkit for designing and constructing custom controllers that can be used
on a multitude of operating systems and devices.

TouchOSC can be used on touch-screen mobile devices as well as desktop operating systems using traditional
input methods.

TouchOSC can communicate with other software and hardware using the MIDI and Open Sound Control protocols in
a variety of ways and via many different types of wired and wireless connections simultaneously.

All versions of TouchOSC include the powerful, integrated editor, to customize every detail of your controller setup.
If the default behavior of the selection of available controls does not exactly do as you wish, there is unlimited
possibilities using the deep scripting engine and the easily configured inter-control communication using local
messages.

Any control surface document you create can be freely exchanged between all versions of the application, and
we've worked hard to make sure that every aspect of your controller will be rendered and behave exactly the same,
no matter what kind of hardware TouchOSC is running on.

We are always working on adding more protocols, input methods and features, if you would like to suggest anything
that is missing for your use-case or workflow - please do not hesitate to contact us ✉ and let us know. We think of
every single suggestion as a votevotevotevote - if enough votes are cast, we will make it happen!

Please note that a manual for an application as complex as TouchOSC will always be a work in progress, much like
the application itself, and we will continually update these pages based on user feedback and application updates -
of which there will be many.

So please do check back from time to time for updates and additions to the material presented here.

Hexler Heavy Industries - 2021

→ TouchOSC Manual

Getting Started

No one likes to read manuals, right?

To get you started as quickly as possible, we've compiled brief tutorials for the minimum steps required to set up
working MIDI and OSC connections, and an example of how the MIDI mapping of another application would usually
work.

These are not meant to be exhaustive instructions on how to set up TouchOSC, but more of a quick startquick startquick startquick start to make
use of your new control surface right nowright nowright nowright now.

If you run into trouble with these, or want to know more, please do consult the detailed sections of the manual for
each of the respective functions and configuration, and please feel free to contact us if nothing helps or you think
something that should be mentioned here is missing.

MIDI
OSC
Ableton Live

→ TouchOSC Manual

Getting Started · MIDI

In this short tutorial, we will be setting up the sending of MIDI messages from TouchOSC to another application on
the network.

We'll be using the TouchOSC Bridge utility application, to handle sending MIDI messages over the network, as this is
a common use-case for control surfaces running on mobile touch-screen devices.

If you want to send MIDI messages between TouchOSC and other applications or ports on the same device or
computer, the set-up becomes much more straight forward, and you can skip the steps involving TouchOSC Bridge
in this tutorial.

⚠ If you are running the Windows operating system and choose to connect If you are running the Windows operating system and choose to connect If you are running the Windows operating system and choose to connect If you are running the Windows operating system and choose to connect via a network connection,via a network connection,via a network connection,via a network connection,
please note that the Windows firewall can prevent this setup from working. Should you run please note that the Windows firewall can prevent this setup from working. Should you run please note that the Windows firewall can prevent this setup from working. Should you run please note that the Windows firewall can prevent this setup from working. Should you run intointointointo
problems, please disable the Windows firewall temporarily and try again.problems, please disable the Windows firewall temporarily and try again.problems, please disable the Windows firewall temporarily and try again.problems, please disable the Windows firewall temporarily and try again.

Protokol
TouchOSC Bridge
TouchOSC
Send MIDI messages

Protokol ↑

We'll be using the Protokol application, our free tool for testing OSC and MIDI connections and messages. This is
the same utility we use in-house for testing our applications.

Protokol is available for all the same platforms as TouchOSC and is a free download.

Download and install any version of Protokol ↗
Launch the application, switch to the MIDIMIDIMIDIMIDI tab page, and check the checkbox next to EnabledEnabledEnabledEnabled
Protokol is now waiting for incoming MIDI messages on all available MIDI ports

TouchOSC Bridge ↑

Download and install TouchOSC Bridge ↗
Launch the application, a small icon will appear in the menu bar on macOS, or the task tray on Windows
Protokol should now display the connection of the new MIDI port created by TouchOSC Bridge

TouchOSC ↑

Next we'll configure TouchOSC to send MIDI messages to TouchOSC Bridge and load one of the included example
layouts.

Launch TouchOSC and open the ConnectionsConnectionsConnectionsConnections configuration by pressing the button with the chain link icon on
the editor toolbar
Switch to the BridgeBridgeBridgeBridge tab page
Enable the checkbox next to Connection 1Connection 1Connection 1Connection 1 and use the BrowseBrowseBrowseBrowse button to select the name of the host or
device where you launched TouchOSC Bridge
The HostHostHostHost field should now be filled in

Switch to the MIDIMIDIMIDIMIDI tab page
Enable the checkbox next to Connection 1Connection 1Connection 1Connection 1 and use the BrowseBrowseBrowseBrowse buttons to select <Bridge <Bridge <Bridge <Bridge 1>1>1>1> for both the
Send PortSend PortSend PortSend Port and Receive PortReceive PortReceive PortReceive Port fields.

Now we'll load one of TouchOSC's included example layouts.

Open the list of included example layouts, depending on your operating system:
For the desktop versionFor the desktop versionFor the desktop versionFor the desktop version, find the menu at Help > ExamplesHelp > ExamplesHelp > ExamplesHelp > Examples
For the mobile versionFor the mobile versionFor the mobile versionFor the mobile version, find the example browser at the top of the editor panel on the right, and press the
button with the book icon
Select any one of the first four documents with Mk2Mk2Mk2Mk2 in the name

With the document now loaded, and the connection configured, put TouchOSC into control surface modecontrol surface modecontrol surface modecontrol surface mode by
pressing the playplayplayplay button on the editor toolbar, or by using the CTRL/CMD+E keyboard shortcut on desktop
platforms.

Send MIDI messages ↑

With both the receiver and sender configured and ready to go, we'll send some MIDI messages.

Move a fader, press a button or interact with any other control on the control surface in TouchOSC and you should
see the received MIDI messages being printed in Protokol.

→ TouchOSC Manual

Getting Started · OSC

In this short tutorial, we will be setting up the sending of OSC messages from TouchOSC to another application.

⚠ If you are running the Windows operating system and choose to connect If you are running the Windows operating system and choose to connect If you are running the Windows operating system and choose to connect If you are running the Windows operating system and choose to connect via a network connection,via a network connection,via a network connection,via a network connection,
please note that the Windows firewall can prevent this setup from working. Should you run please note that the Windows firewall can prevent this setup from working. Should you run please note that the Windows firewall can prevent this setup from working. Should you run please note that the Windows firewall can prevent this setup from working. Should you run intointointointo
problems, please disable the Windows firewall temporarily and try again.problems, please disable the Windows firewall temporarily and try again.problems, please disable the Windows firewall temporarily and try again.problems, please disable the Windows firewall temporarily and try again.

Protokol
TouchOSC
Send OSC messages

Protokol ↑

We'll be using the Protokol application, our free tool for testing OSC and MIDI connections and messages. This is
the same utility we use in-house for testing our applications.

Protokol is available for all the same platforms as TouchOSC and is a free download.

Download and install any version of Protokol ↗
Launch the application, switch to the OSCOSCOSCOSC tab page, and check the checkbox next to EnabledEnabledEnabledEnabled
Protokol is now listening for OSC messages and is also advertising its OSC receiver on the network.

TouchOSC ↑

Next we'll configure TouchOSC to send OSC messages to Protokol and load one of the included example layouts.

Launch TouchOSC and open the ConnectionsConnectionsConnectionsConnections configuration by pressing the button with the chain link icon on
the editor toolbar
Switch to the OSCOSCOSCOSC tab page
Enable the checkbox next to Connection 1Connection 1Connection 1Connection 1 and use the BrowseBrowseBrowseBrowse button to select the name of the host or
device where you launched Protokol
Both HostHostHostHost and Send PortSend PortSend PortSend Port fields should now be filled in

Now we'll load one of TouchOSC's included example layouts.

Open the list of included example layouts, depending on your operating system:
For the desktop versionFor the desktop versionFor the desktop versionFor the desktop version, find the menu at Help > ExamplesHelp > ExamplesHelp > ExamplesHelp > Examples
For the mobile versionFor the mobile versionFor the mobile versionFor the mobile version, find the example browser at the top of the editor panel on the right, and press the
button with the book icon
Select any one of the first four documents with Mk2Mk2Mk2Mk2 in the name

With the document now loaded, and the connection configured, put TouchOSC into control surface modecontrol surface modecontrol surface modecontrol surface mode by
pressing the playplayplayplay button on the editor toolbar, or by using the CTRL/CMD+E keyboard shortcut on desktop
platforms.

Send OSC messages ↑

With both the receiver and sender configured and ready to go, we'll send some OSC messages.

Move a fader, press a button or interact with any other control on the control surface in TouchOSC and you should
see the received OSC messages being printed in Protokol.

→ TouchOSC Manual

Getting Started · Ableton Live

In this short tutorial, we will walk through mapping MIDI messages from TouchOSC to interface elements in
Ableton Live.

⚠ You should complete the steps in the You should complete the steps in the You should complete the steps in the You should complete the steps in the Getting Getting Getting Getting Started · MIDIStarted · MIDIStarted · MIDIStarted · MIDI tutorial first, so we have a working MIDI tutorial first, so we have a working MIDI tutorial first, so we have a working MIDI tutorial first, so we have a working MIDI
connection before we start setting up Ableton Live.connection before we start setting up Ableton Live.connection before we start setting up Ableton Live.connection before we start setting up Ableton Live.

Even though we are using Ableton Live in this example, other applications can usually be configured in a similar
fashion. Please refer to the application's manual, specifically the MIDI mapping / learn section, to find out how you
can map MIDI messages to application functions.

Open Ableton Live's PreferencesPreferencesPreferencesPreferences dialog, select the section labelled "MIDI / Sync" and enable the TrackTrackTrackTrack and
RemoteRemoteRemoteRemote columns for the MIDI Ports labelled TouchOSC BridgeTouchOSC BridgeTouchOSC BridgeTouchOSC Bridge.

Now Ableton Live is receiving and sending MIDI messages through TouchOSC Bridge. To confirm this, move or press
any control in TouchOSC's Simple Mk2Simple Mk2Simple Mk2Simple Mk2 layout (which we loaded in the MIDI tutorial) and you should see the tiny
light in the very top-right corner of Ableton Live light up whenever you do so.

Enter Ableton Live's MIDI Mapping mode by pressing the button labelled MIDIMIDIMIDIMIDI, also in the top-right corner. This will
highlight all elements in Live's UI that can be assigned to MIDI controllers with a blue overlay. Select one of these
elements, such as one of the Audio-channel's volume faders, and the next MIDI message received by Live will be
assigned to this UI element.

Move or press any of the controls in TouchOSC and you will see that Live will add a row to the MIDI MappingsMIDI MappingsMIDI MappingsMIDI Mappings
window, and will add another overlay right above the selected UI element displaying details about the MIDI
message, such as channel and type.

search 🔍

 PDF

Introduction

Getting Started
MIDI
OSC
Ableton Live

Editor
Interface
Document
Control

Properties
Values

Messages
MIDI
OSC
Local
Gamepad

Script
Network

Connections
MIDI
OSC
Bridge
Gamepad

Preferences
General
Editor
Control Surface
Script
Log View
Import
MIDI

Control Reference

Setup Examples
Protokol / MIDI
Protokol / OSC
Ableton Live

Android USB MIDI
Resolume Wire
Steam Deck
Traktor Pro
Logic Pro

Scripting API
Lua Functions
Global Functions

Utility
Message
JSON

Objects
Control
Messages
Rectangle
Color
Vectors

Enumerations
Constants
Properties & Values
Examples

02:26

02:06

02:14

TouchOSC
Next generation modular control surface

https://hexler.net/
https://hexler.net/products
https://hexler.net/support
https://hexler.net/contact
https://en.wikipedia.org/wiki/MIDI
https://en.wikipedia.org/wiki/Open_Sound_Control
https://hexler.net/touchosc/manual/connections
https://hexler.net/touchosc/manual/editor
https://hexler.net/touchosc/manual/controls
https://hexler.net/touchosc/manual/script
https://hexler.net/touchosc/manual/editor-messages-local
https://hexler.net/contact
https://hexler.net/contact
https://hexler.net/touchosc/manual/getting-started-midi
https://hexler.net/touchosc/manual/getting-started-osc
https://hexler.net/touchosc/manual/getting-started-live
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/protokol
https://hexler.net/protokol#get
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc#resources
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-interface#toolbar
https://hexler.net/touchosc/manual/editor-interface#panel
https://hexler.net/touchosc/manual/editor-interface#toolbar
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/protokol
https://hexler.net/protokol#get
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-interface#toolbar
https://hexler.net/touchosc/manual/editor-interface#panel
https://hexler.net/touchosc/manual/editor-interface#toolbar
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/getting-started-midi
https://hexler.net/pub/touchosc/touchosc-manual.pdf
https://hexler.net/touchosc/manual/introduction
https://hexler.net/touchosc/manual/getting-started-midi
https://hexler.net/touchosc/manual/getting-started-osc
https://hexler.net/touchosc/manual/getting-started-live
https://hexler.net/touchosc/manual/getting-started
https://hexler.net/touchosc/manual/editor-interface
https://hexler.net/touchosc/manual/editor-document
https://hexler.net/touchosc/manual/editor-control
https://hexler.net/touchosc/manual/editor-control-properties
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/editor-messages
https://hexler.net/touchosc/manual/editor-messages-midi
https://hexler.net/touchosc/manual/editor-messages-osc
https://hexler.net/touchosc/manual/editor-messages-local
https://hexler.net/touchosc/manual/editor-messages-gamepad
https://hexler.net/touchosc/manual/editor-script
https://hexler.net/touchosc/manual/editor-network
https://hexler.net/touchosc/manual/editor
https://hexler.net/touchosc/manual/connections-midi
https://hexler.net/touchosc/manual/connections-osc
https://hexler.net/touchosc/manual/connections-bridge
https://hexler.net/touchosc/manual/connections-gamepad
https://hexler.net/touchosc/manual/connections
https://hexler.net/touchosc/manual/preferences-general
https://hexler.net/touchosc/manual/preferences-editor
https://hexler.net/touchosc/manual/preferences-control-surface
https://hexler.net/touchosc/manual/preferences-script
https://hexler.net/touchosc/manual/preferences-log-view
https://hexler.net/touchosc/manual/preferences-import
https://hexler.net/touchosc/manual/preferences-midi
https://hexler.net/touchosc/manual/preferences-general
https://hexler.net/touchosc/manual/controls
https://hexler.net/touchosc/manual/getting-started-midi
https://hexler.net/touchosc/manual/getting-started-osc
https://hexler.net/touchosc/manual/getting-started-live
https://hexler.net/touchosc/manual/setup-android-usb-midi
https://hexler.net/touchosc/manual/setup-resolume-wire
https://hexler.net/touchosc/manual/setup-steam-deck
https://hexler.net/touchosc/manual/setup-traktor
https://hexler.net/touchosc/manual/setup-logic
https://hexler.net/touchosc/manual/setup
https://hexler.net/touchosc/manual/script-functions-lua
https://hexler.net/touchosc/manual/script-functions-global
https://hexler.net/touchosc/manual/script-functions-global#utility
https://hexler.net/touchosc/manual/script-functions-global#message
https://hexler.net/touchosc/manual/script-functions-global#json
https://hexler.net/touchosc/manual/script-objects
https://hexler.net/touchosc/manual/script-objects-control
https://hexler.net/touchosc/manual/script-objects-messages
https://hexler.net/touchosc/manual/script-objects-rectangle
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/script-objects-vectors
https://hexler.net/touchosc/manual/script-enumerations
https://hexler.net/touchosc/manual/script-constants
https://hexler.net/touchosc/manual/script-properties-and-values
https://hexler.net/touchosc/manual/script-examples
https://hexler.net/touchosc/manual/script
https://hexler.net/touchosc

The element is now mapped bi-directionally between TouchOSC and Live. You can now exit Live's MIDI Mapping
mode by clicking on the MIDIMIDIMIDIMIDI button in the top-right corner again and start controlling Live with TouchOSC. For
more info on configuring Ableton Live please refer to Ableton's official manual.

→ TouchOSC Manual

Editor

TouchOSC comes with a powerful, integrated editor on all platforms, for creating and editing control surface
documents.

TouchOSC can open touchosc layout files made for TouchOSC Mk1, and some aspects of the import can be
configured in the preferences.

Documents will be saved in a new tosc document format, specific to this new version, which is notnotnotnot compatible
with the TouchOSC Mk1 application.

Multiple documents can be opened at the same time and all parts of the layout can be copied from one document
to another.

Multiple instances of the application can be connected over the network, for synchronized editing and preview on
multiple clients in real-time, using the application's Editor Network client-server functionality.

While there a minor differences between the desktop and mobile versions, most functions work identical across all
supported platforms, and we'll point out some of the differences in their respective sections.

→ TouchOSC Manual

Editor · Interface

The main interface of TouchOSC can be in one of two modes, EditorEditorEditorEditor and Control SurfaceControl SurfaceControl SurfaceControl Surface mode.

Switch to control surface mode by pressing the playplayplayplay button in the editor Toolbar, and the circlecirclecirclecircle icon button in the
control surface to switch back. On desktop platforms the CTRL/CMD+E keyboard shortcut can be used to toggle
between both modes.

The position of the circlecirclecirclecircle button in the control surface can be configured in the preferences.

Control Surface Editor
Panel
Toolbar
Log View
Message Mapping
Font Viewer

Control Surface Editor ↑

The main control surface editing area is where most editing actions take places.

Right-clicking on an empty area of the document (or long-pressing on mobile platforms) will bring up the CreateCreateCreateCreate
context menu for adding new controls.

Controls can be selected, either by directly pressing on a control's frame or using a lasso selection by pressing and
dragging from an empty area of the document. With controls selected, the panel on the right will display context-
sensitive information and properties depending on the type of selection and number of selected controls.

When resizing controls using the handles placed around the edges of the control's frame, on desktop platforms the
following modifier keys can be held down to restrict the re-sizing behavior:

SHIFTSHIFTSHIFTSHIFT - Resize with original aspect-ratio locked
CONTROLCONTROLCONTROLCONTROL - Resize around the center point of the control

Right-clicking on the selection (or long-pressing on mobile platforms) will bring up the EditEditEditEdit context menu.

When a control is locked, it cannot be selected. A locked control can be unlocked using the document tree view.

Some types of controls are containers for other controls, selecting Edit containerEdit containerEdit containerEdit container from the EditEditEditEdit context menu will
descend into the container and display the contents for editing.

To exit editing a container, use the additional Exit containerExit containerExit containerExit container menu item of the CreateCreateCreateCreate menu, or double-click outside
of the container's frame bounds in the editor.

Panel ↑

The editor panel on the right will display a navigator view of the whole document, the document properties, a
hierarchical document tree view of all controls, and, if any controls are currently selected, the control properties,
values and messages of the current selection.

All sections of the editor panel can be collapsed and expanded using the section header bar.

On mobile platformsmobile platformsmobile platformsmobile platforms, the top of the panel holds an additional toolbar with functions that would usually be found in
the window menu on desktop platforms.

From left to right, the functions are as follows:

Toggle the editor paneleditor paneleditor paneleditor panel
Toggle the log viewlog viewlog viewlog view
Open the message mappingmessage mappingmessage mappingmessage mapping dialog
Open the font viewerfont viewerfont viewerfont viewer
SaveSaveSaveSave document
OpenOpenOpenOpen document
OpenOpenOpenOpen an included example layout
Application preferencespreferencespreferencespreferences and aboutaboutaboutabout screen

Toolbar ↑

The editor toolbar holds buttons and menus for various control surface editor functions.

PLEASE NOTE:PLEASE NOTE:PLEASE NOTE:PLEASE NOTE: On mobile platforms with small screens there might not be enough horizontal space to
display all toolbar buttons, in which case the toolbar can be scrolled by touch, and slightly transparent, white
overlays will be displayed at either end to indicate this.

From left to right, the functions are as follows:

UndoUndoUndoUndo
RedoRedoRedoRedo
CopyCopyCopyCopy selection
PastePastePastePaste clipboard contents
DeleteDeleteDeleteDelete selection

Add controlAdd controlAdd controlAdd control
Edit containerEdit containerEdit containerEdit container - With an editable container control type selected, this function becomes available to edit the
container contents.
Exit containerExit containerExit containerExit container - When editing the contents of an editable container control type, this function becomes
available to exit the current container and ascend one level in the document hierarchy.

ZoomZoomZoomZoom step and numeric input
Zoom to 1:1Zoom to 1:1Zoom to 1:1Zoom to 1:1
Zoom to FitZoom to FitZoom to FitZoom to Fit
Grid, snap and rulersGrid, snap and rulersGrid, snap and rulersGrid, snap and rulers menu

Switch to control surface viewcontrol surface viewcontrol surface viewcontrol surface view
ConnectionsConnectionsConnectionsConnections configuration
Editor NetworkEditor NetworkEditor NetworkEditor Network configuration

Log View ↑

The log view provides a way for various systems of the application to print information about the internal state. This
can be helpful when troubleshooting problems or for confirming that configured connections or scripts are working
correctly.

The log view will display:

MIDI/OSC: Received and sent MIDI and OSC messages
LOCAL: Values transmitted using local messages
GAMEPAD: Received inputs from connected game controllers
SCRIPT: Script errors and calls to the script print function

PLEASE NOTE:PLEASE NOTE:PLEASE NOTE:PLEASE NOTE: When the log view is opened, the application will enable a slower code path to print and
format information about its internal state. This will cause a lot of additional processing to take place and
will cause reduced run-time performancereduced run-time performancereduced run-time performancereduced run-time performance. We advise to only open the log view when troubleshooting
problems during development.

The additional buttons in the top right provide the following functions, from left to right:

PausePausePausePause the logging of messages
Display a timestamptimestamptimestamptimestamp for messages
Insert a markermarkermarkermarker into the log
ClearClearClearClear the log

On desktop platforms, it is possible to open the log view in a separate window using an option in the preferences.

Message Mapping ↑

The Message Mapping dialog displays a sortable table of all MIDI, OSC, LOCAL and GAMEPAD messages configured
for the current document.

Messages can be sorted by each column in the table by clicking/tapping on the table header and exported to a
comma-separated format (CSV) using the ExportExportExportExport button.

Double-clicking or tapping any row in the table will close the dialog and select the control that the message is
owned by in the control surface editor view.

The columns for each type of message are as follows:

MIDI

ControlControlControlControl - The control the message is configured for
Trg.Trg.Trg.Trg. - The value object(s) that will trigger the sending of the message
TypeTypeTypeType - The type of the MIDI message
CHCHCHCH - The channel of the MIDI message
D1D1D1D1 - The value of the first data byte of the MIDI message
D2D2D2D2 - The value of the second data byte of the MIDI message (if any)
Con.Con.Con.Con. - The connections the message is configured to be sent/received on (left to right from first to
last connection, 1=enabled, 0=disabled)

OSC

ControlControlControlControl - The control the message is configured for
Trg.Trg.Trg.Trg. - The value object(s) that will trigger the sending of the message
AddressAddressAddressAddress - The OSC address of the message
ArgumentsArgumentsArgumentsArguments - The arguments of the message
Con.Con.Con.Con. - The connections the message is configured to be sent/received on (left to right from first to
last connection, 1=enabled, 0=disabled)

LOCAL

ControlControlControlControl - The control the message is configured for
Trg.Trg.Trg.Trg. - The value object(s) that will trigger the sending of the message
⊙⊙⊙⊙→→→→ - The source variable of the message
TargetTargetTargetTarget - The target control of the message
→→→→⊙⊙⊙⊙ - The target variable of the message

GAMEPAD

ControlControlControlControl - The control the message is configured for
InputInputInputInput - The game controller input that will trigger the message
TargetTargetTargetTarget - The target value or property of the message
Con.Con.Con.Con. - The connections the message is configured to be received on (left to right from first to last
connection, 1=enabled, 0=disabled)

Font Viewer ↑

The Font Viewer provides a way to browse all characters of the typefaces included with the application.

The application embeds a number of fonts available in all versions for all platforms, to guarantee that any
document shared between operating systems and platforms will be rendered exactly the same - without errors or
missing symbols.

At the top there is a choice of two styles of typefaces, DefaultDefaultDefaultDefault and MonospacedMonospacedMonospacedMonospaced, analogous to the fontfontfontfont property of
TouchOSC's LabelLabelLabelLabel and TextTextTextText controls.

Clicking or tapping any character in the font viewer will copy that character to the clipboard.

When rendering any character, TouchOSC will search a series of fallback typefaces:

Default

Ubuntu Regular
Noto Sans
Noto Emoji

Monospaced

DejaVu Sans Mono
Noto Sans
Noto Emoji

Unchecking the Include fallback fontsInclude fallback fontsInclude fallback fontsInclude fallback fonts option will limit the display of characters to the first font in the fallback
chain only.

PLEASE NOTE:PLEASE NOTE:PLEASE NOTE:PLEASE NOTE: This option only affects the display in the font viewer itself, and not the rendering of LabelLabelLabelLabel
and TextTextTextText controls.

→ TouchOSC Manual

Editor · Document

A document is the top-level container for all controls and the root node of the control hierarchy tree.

A document has properties that define the display size and background color, global routing options for messages
and optional notes by the creator.

A document can also have a script attached and define control callback functions, which will be called before any
other script callbacks and allow to capture certain events globally before they are forwarded to the target controls.
See Object Callback Functions for details.

NoteNoteNoteNote that documents will be scaled proportionally to the available display size when rendered in control
surface mode. For performance reasons, it is advised to choose the smallest possible size and aspect ratio to
comfortably position and edit your layout's controls, and let the application handle the final scaling for
presentation.

Width
Height
Color
Routing
Comments
Document Tree

Width ↑

The width of the document.

Height ↑

The height of the document.

Color ↑

The background color of the document.

Routing ↑

The global routing matrix determines which types of received messages or input will cause any other type of
configured messages to be sent or suppressed.

The left column lists all possible types of inputs that can change a control's values. The bottom row lists all
possible types of messages that can be sent in response to a control's value changing.

Any event changing a control's value will be tagged with the type of action that caused the value change. When a
control's value changes, the application then compiles a list of all enabled messages that are being triggered by
this value change. The application will then consult the routing options of the document to determine which of
these messages will be sent depending on the type of event that caused the initial value change.

For example:For example:For example:For example: If any control has an enabled MIDI message that will update the control's x value on reception, and an
enabled OSC message that specifies the x value as a trigger, the incoming MIDI message will only cause the OSC
message to be sent if the cross at the intersection between MIDI input in the left column and OSC output in the
bottom row is checked.

Comments ↑

Each document can optionally have creator's name and comments attached to it. The CommentsCommentsCommentsComments button in the
document properties panel will be highlighted if these are not empty.

At the bottom of the dialog, and also in the preferences, there is an option to automatically open the creator's
comments after loading the document, if any.

We do encourage users to leave this option enabled, as there might be helpful tips, tricks and guidance attached to
a document. Also, in our humble opinion, it's just nice to acknowledge the person sharing their work.

Document Tree ↑

The document tree displays a hierarchical view of all controls in the document.

Controls can be selected and the current selection will be highlighted in the tree structure. For each control the
visiblevisiblevisiblevisible and lockedlockedlockedlocked properties can be toggled with the eye and lock icons on the right respectively.

Controls that are containers and hence can contain child controls will be displayed as tree nodes that can be
expanded and collapsed using the arrow icon to the left of the control name.

→ TouchOSC Manual

Editor · Control

A control is the main object and basic building block for constructing control surfaces.

A control has properties and values that define its appearance and behavior, and controls can have messages and
scripts attached to it.

Some control types can be containers for other controls. All controls carry a reference to their parent control,
except for the document root container at the very top of the document hierarchy.

See the Control Reference for a complete list of available control types and their properties.

→ TouchOSC Manual

Editor · Control · Properties

All controls have properties that determine appearance and behaviour.

Control properties can be changed in the editor and by messages and scripts.

All controls have a set of common properties and another set of properties specific to their type. Not all control
types might use all the common properties or use them in the same way.

For a list of control type specific properties, see the control reference.

Type
Name
Tag
X, Y, W, H
Color
Locked
Visible
Interactive
Background
Outline
Grab Focus
Pointer
Corner
Orientation

https://hexler.net/touchosc-mk1
https://hexler.net/touchosc/manual/preferences-import
https://hexler.net/touchosc/manual/editor-network
https://hexler.net/touchosc/manual/preferences-control-surface
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-document#tree
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-document
https://hexler.net/touchosc/manual/editor-document#tree
https://hexler.net/touchosc/manual/editor-control-properties
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/editor-messages
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/connections
https://hexler.net/touchosc/manual/editor-network
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-functions-lua
https://hexler.net/touchosc/manual/preferences-log-view
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://design.ubuntu.com/font
https://fonts.google.com/noto/specimen/Noto+Sans+JP
https://fonts.google.com/noto/specimen/Noto+Emoji
https://dejavu-fonts.github.io/
https://fonts.google.com/noto/specimen/Noto+Sans+JP
https://fonts.google.com/noto/specimen/Noto+Emoji
https://hexler.net/touchosc/manual/script-objects-control#callback-functions
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/preferences-general#show-comments
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-properties
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/editor-messages
https://hexler.net/touchosc/manual/editor-script
https://hexler.net/touchosc/manual/controls
https://hexler.net/touchosc/manual/controls

Type ↑

The type of the control.

See the control reference for all possible types of controls.

Name ↑

The name of the control.

A name string can be freely assigned to a control and does not have to be unique. Use this property to identify
controls in messages or scripts.

Tag ↑

A tag for the control.

A tag string can be freely assigned to a control and does not have to be unique. Use this property to identify
controls in messages or scripts.

X, Y, W, H ↑

The x and y position and the width and height of the control.

Note:Note:Note:Note: All are integer values.

Color ↑

The color of the control.

Depending on the type of control, this property will be used as a base color from which multiple shades will be
generated for different parts of the control.

Locked ↑

The locked state of the control.

When a control is locked, it cannot be selected or otherwise modified in the editor. To unlock a control, right-click
(or long-press on mobile) and select UnlockUnlockUnlockUnlock from the context menu.

Visible ↑

The visible state of the control.

If the visible property is set to off, apart from the control not being rendered, it will also not be considered as the
target for any pointer interaction, same as if the Interactive property was set to off.

When a control is not visible, it can still be selected in the editor, either directly or by lasso selection, to change the
visibility back to on.

Note:Note:Note:Note: The list of pointers currently associated with the control will not be modified when this property changes.

Interactive ↑

The interactive state of the control.

This property determines if the control will be considered when picking the target of a pointer interaction.

Note:Note:Note:Note: The list of pointers currently associated with the control will not be modified when this property changes.

Background ↑

Determines if the control should be rendered with a background.

Outline ↑

Determines if the control should be rendered with an outline and which style of outline.

Possible outline styles are:

FULL
CORNERS
EDGES

Grab Focus ↑

Determines if the control will capture pointers that are interacting with it.

If this property is set to off, a pointer will only be associated with the control for as long as the pointer's position is
within the frame of the control and no other control has captured it.

If this property is set to on, the pointer will be added to the list of the control's pointers when it first enters the
control's frame, and only be removed when the pointer event ends.

Pointer ↑

Determines which pointer takes priority if there's multiple pointers interacting with the control.

Most types of controls only need one pointer input to determine their behavior, for example a button or a fader-like
control. If multiple pointers are associated with the control, this property will determine which of the pointers will
be selected as the most significant one - the one that will be used when updating the control's state and values.

Possible values are:

OLDEST
NEWEST

Corner ↑

Determines the amount of corner rounding the control will be rendered with.

A value in the range from 0 to 10, with zero indicating no rounded corners.

Orientation ↑

Determines the orientation of the control, which will influence the control's rendering and behavior depending on
control type.

→ TouchOSC Manual

Editor · Control · Values

A control can have multiple value objects that are related to a control's internal state.

Values differ from properties in that they can be used as triggers for messages and script callback functions.

A value object can be changed by pointers, messages and scripts. Whenever any value object changes, the
application will invoke the control's onValueChanged script callback function, if it is defined, and then process all
messages that specify the changed value in their list of triggers.

All controls have a TouchTouchTouchTouch value object, the BOOLEAN value of which indicates if there are any pointers currently
interacting with the control.

Locked
Type
Default
Current
Default Pull
Default-Current Lock

Locked ↑

The locked state of the value object.

If a value is locked it cannot be changed by any pointers, messages or scripts.

Type ↑

The type of the value object.

Possible value types are:

BOOLEAN
INTEGER
FLOAT
STRING

Default ↑

The default value of this value object.

The value that this value object will hold when the document is loaded initially.

Current ↑

The current value of this value object.

Default Pull ↑

A factor, ranging from 0 to 100 that specifies how strongly the CurrentCurrentCurrentCurrent value will be pulled towards the DefaultDefaultDefaultDefault
value when the control is not currently the target of any pointer.

Note:Note:Note:Note: This value property is currently only available for value objects of type FLOAT.

Default-Current Lock ↑

The lock icon next to the DefaultDefaultDefaultDefault and CurrentCurrentCurrentCurrent value fields can be used to lock both to the same value, meaning if
one changes, the other will also change.

Enabling this property will make sure that the value object will be saved with its current value as the default value,
which will then be restored when the document is loaded.

→ TouchOSC Manual

Editor · Messages

TouchOSC supports multiple message types to send and receive.

MIDI, OSC and local messages can be sent in response to control value object changes using a message's triggertriggertriggertrigger
configuration.

MIDI and OSC messages can be also be sent using script functions and can be received on configured connections.

Messages can be added by pressing the plusplusplusplus button on the right of the message panel header in the editor panel
and selecting one of the available message types.

Messages can be removed by pressing the xxxx button on the right of each individual message's panel header and
confirming the action.

A control can have an unlimited number of messages configured. Messages will be processed in the order they are
listed in the interface, the order of messages can be changed by dragging the message to a new position in the list.

MIDI
OSC
Local
Gamepad

MIDI ↑

A MIDI message to send and receive on one of the configured MIDI connections.

See the section on MIDI message configuration for details.

OSC ↑

An Open Sound Control message to send and receive on one of the configured OSC connections.

See the section on OSC message configuration for details.

Local ↑

A local message to efficiently send messages between controls in a document without the overhead of a
communication protocol or need for complex scripting.

See the section on Local message configuration for details.

Gamepad ↑

A gamepad message for receiving inputs from a connected game controller.

See the section on Gamepad message configuration for details.

→ TouchOSC Manual

Editor · Messages · MIDI

A control can have multiple MIDI messages configured. Messages can be both sent and received on multiple
connections.

When a message is enabled to send, it will be sent on the configured connections when any of the control's values
enabled as trigger change, and if the change matches the change condition of the trigger.

When a message is enabled to receive, it will be considered to be matched against received MIDI messages if the
incoming message is received on one of the enabled connections.

Message matching depends on the type of MIDI message. TouchOSC defines part of a MIDI message as the addressaddressaddressaddress
part, used for routing to determine the target controls, and another part as the payloadpayloadpayloadpayload.

The type of the message and the addressaddressaddressaddress part will be used to determine if the incoming message matches the
control's message, and the payloadpayloadpayloadpayload part will then be processed to extract values and properties to update (if so
configured).

See the message matching section for details on address/payload for each message type.

TEST
Enabled
Send
Receive
Feedback
No Duplicates
Connections
Trigger
Type
Matching

TEST ↑

Trigger sending of the message manually.

The TEST button will send the message immediately as currently configured.

All message settings will be evaluated except for the EnabledEnabledEnabledEnabled, SendSendSendSend, ReceiveReceiveReceiveReceive, FeedbackFeedbackFeedbackFeedback, No DuplicatesNo DuplicatesNo DuplicatesNo Duplicates flags and
TriggerTriggerTriggerTrigger configuration.

Enabled ↑

The enabled state of the message.

If a message is not enabled, it will neither be sent or matched to received messages.

Send ↑

The send enable flag of the message.

Only if the send flag is set to on for the message, it will be considered for sending when any of the values enabled
as triggers change, and the trigger's change condition is met.

Receive ↑

The receive enable flag of the message.

Only if the receive flag is set to on for the message, it will be considered for being matched against any incoming
MIDI messages received on any of the connections enabled for the message.

Feedback ↑

The feedback enable flag of the message.

The feedback flag controls the processing of the message in situations where both the send and receive flags are
enabled and a received MIDI message changes a value that is also enabled in the list of send triggers for the
message.

If a received MIDI message, and subsequent change of value, would also cause the same message to be sent again
immediately, this could cause an undesirable feedback loop in the interaction with another application, hence this
flag controls if the message should be sent again in this case.

⚠ The feedback enable flag is set to off by default because of the potential problems this behaviorThe feedback enable flag is set to off by default because of the potential problems this behaviorThe feedback enable flag is set to off by default because of the potential problems this behaviorThe feedback enable flag is set to off by default because of the potential problems this behavior
could cause. could cause. could cause. could cause. Please handle with care.Please handle with care.Please handle with care.Please handle with care.

No Duplicates ↑

Prevent the sending of duplicate messages.

Enabling this flag will keep a history of the most recently sent message and prevent sending of identical messages
multiple times in a row.

Sending of duplicate messages can occur in certain cases and message configurations, for example when scaling
the high resolution floating point value of a control to the MIDI value range.

⚠ It is advised to only enable this flag if the receiving side shows problems with duplicate messages.It is advised to only enable this flag if the receiving side shows problems with duplicate messages.It is advised to only enable this flag if the receiving side shows problems with duplicate messages.It is advised to only enable this flag if the receiving side shows problems with duplicate messages.

Connections ↑

The connections that the message should be sent and received on. The numbers refer to the numbered MIDI
connections configured in the MIDI connections configuration.

If the message is enabled to be sent, it will be sent only on the connections enabled here.

If the message is enabled to be received, any received MIDI messages will only be considered to be matched to this
message if received on one of the connections enabled here.

The special connection labelled '∞' enables sending/receiving messages on all connections.

Trigger ↑

The trigger conditions for the message to be sent.

If the message send flag is set to on, it will be sent only if any of the value objects enabled here change, and only if
the configured change condition is being met.

Any of the control's values can be enabled individually here, with one of the possible change conditions of:

ANYANYANYANY - Any change in value will cause the message to be sent
RISERISERISERISE - Any change causing the value to increase will cause the message to be sent
FALLFALLFALLFALL - Any change causing the value to decrease will cause the message to be sent

Type ↑

The type of MIDI message.

TouchOSC supports the following types of MIDI messages:

Note Off/On
Poly pressure
Control change
Program change
Channel pressure
Pitch bend
System exclusive

Depending on the type of message selected, the configuration of the message fields will change. For any of the
possible parts of any given MIDI message type, the source value used can be any of:

CONSTANTCONSTANTCONSTANTCONSTANT
A constant value.

INDEXINDEXINDEXINDEX
The current index of the control in its parent list of child controls.

VALUEVALUEVALUEVALUE
The current value of one of the control's value objects.

PROPERTYPROPERTYPROPERTYPROPERTY
The current value of one of the control's properties.

All values will be converted to integer types, and all source value types except for CONSTANT can optionally be
scaled before sending (and in reverse after reception).

Scaling is applied using the following calculation:

out = min + in * (max - min)

Matching ↑

If the receive flag is set to on for a message, it will be considered as the target of any received MIDI message if its
configuration matches the incoming message.

The type of message will determine how an incoming message will be matched, and then possibly routed, to be
received and processed according to this message's configuration. Only if an incoming message's type andtype andtype andtype and
addressaddressaddressaddress part match the configured message will it be received and processed according to this message's
description.

If the message configuration uses a control value or property for any of the addressaddressaddressaddress parts of the message type, the
received message has to also match current values of these at the time of reception.

If the message configuration uses a control value or property for the payloadpayloadpayloadpayload part of the message type, the value or
property will be updated using the received payload value.

The following table lists the parts of a MIDI message TouchOSC considers address and payload for each of the
supported message types:

TypeTypeTypeType AddressAddressAddressAddress PayloadPayloadPayloadPayload

Note Off/On Channel + Note Velocity

Poly pressure Channel + Note Velocity

Control change Channel + Controller Value

Program change Channel Value

Channel pressure Channel Value

Pitch bend Channel Value

⚠ Received messages of type System exclusive can only be processed using Received messages of type System exclusive can only be processed using Received messages of type System exclusive can only be processed using Received messages of type System exclusive can only be processed using scriptingscriptingscriptingscripting and only at theand only at theand only at theand only at the
document root level.document root level.document root level.document root level.

→ TouchOSC Manual

Editor · Messages · OSC

A control can have multiple OSC messages configured. Messages can be both sent and received on multiple
connections.

When a message is enabled to send, it will be sent on the configured connections when any of the control's values
enabled as trigger change, and if the change matches the change condition of the trigger.

When a message is enabled to receive, it will be considered to be matched against received OSC messages if the
incoming message is received on one of the enabled connections and the address part matches the received
message.

TEST
Enabled
Send
Receive
Feedback
No Duplicates
Connections
Trigger
Address
Arguments
Partials

TEST ↑

Trigger sending of the message manually.

The TEST button will send the message immediately as currently configured.

All message settings will be evaluated except for the EnabledEnabledEnabledEnabled, SendSendSendSend, ReceiveReceiveReceiveReceive, FeedbackFeedbackFeedbackFeedback, No DuplicatesNo DuplicatesNo DuplicatesNo Duplicates flags and
TriggerTriggerTriggerTrigger configuration.

Enabled ↑

The enabled state of the message.

If a message is not enabled, it will neither be sent or matched to received messages.

Send ↑

The send enable flag of the message.

Only if the send flag is set to on for the message, it will be considered for sending when any of the values enabled
as triggers change, and the trigger's change condition is met.

Receive ↑

https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/controls
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/interactive
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-properties
https://hexler.net/touchosc/manual/editor-messages
https://hexler.net/touchosc/manual/script-objects-control#callback-functions
https://hexler.net/touchosc/manual/messages
https://hexler.net/touchosc/manual/script
https://hexler.net/touchosc/manual/script-objects-control#callback-functions-onvaluechanged
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/script
https://hexler.net/touchosc/manual/connections
https://hexler.net/touchosc/manual/editor-interface#panel
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/connections-midi
https://hexler.net/touchosc/manual/editor-messages-midi
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/connections-osc
https://hexler.net/touchosc/manual/editor-messages-osc
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-local
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-gamepad
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#triggers
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/connections-midi
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/editor-control-properties
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top

Receive

The receive enable flag of the message.

Only if the receive flag is set to on for the message, it will be considered for being matched against any incoming
OSC messages received on any of the connections enabled for the message.

Feedback ↑

The feedback enable flag of the message.

The feedback flag controls the processing of the message in situations where both the send and receive flags are
enabled and a received OSC message changes a value that is also enabled in the list of send triggers for the
message.

If a received OSC message, and subsequent change of value, would also cause the same message to be sent again
immediately, this could cause an undesirable feedback loop in the interaction with another application, hence this
flag controls if the message should be sent again in this case.

The feedback enable flag is set to off by default because of the potential problems this behavior could cause.
Please handle with care.

No Duplicates ↑

Prevent the sending of duplicate messages.

Enabling this flag will keep a history of the most recently sent message and prevent sending of identical messages
multiple times in a row.

Sending of duplicate messages can occur in certain cases and message configurations, for example when scaling
the high resolution floating point value of a control to a smaller value range or integer/boolean values.

⚠ It is advised to only enable this flag if the receiving side shows problems with duplicate messages.It is advised to only enable this flag if the receiving side shows problems with duplicate messages.It is advised to only enable this flag if the receiving side shows problems with duplicate messages.It is advised to only enable this flag if the receiving side shows problems with duplicate messages.

Connections ↑

The connections that the message should be sent and received on. The numbers refer to the numbered OSC
connections configured in the OSC connections configuration.

If the message is enabled to be sent, it will be sent only on the connections enabled here.

If the message is enabled to be received, any received OSC messages will only be considered to be matched to this
message if received on one of the connections enabled here and the address part matches the received message.

The special connection labelled '∞' enables sending/receiving messages on all configured connections.

Trigger ↑

The trigger conditions for the message to be sent.

If the message send flag is set to on, it will be sent only if any of the value objects enabled here change, and only if
the configured change condition is being met.

Any of the control's values can be enabled individually here, with one of the possible change conditions of:

ANYANYANYANY - Any change in value will cause the message to be sent
RISERISERISERISE - Any change causing the value to increase will cause the message to be sent
FALLFALLFALLFALL - Any change causing the value to decrease will cause the message to be sent

Address ↑

The address part of the message.

The address of the message can be configured with a series of partials that will be evaluated to produce the final
address string.

The address of the message will be used to match any incoming OSC messages and determine if the received
message should be routed to this control.

Arguments ↑

The arguments of the message.

The arguments of the message can be configured with a series of partials, each one representing a single argument
to the message.

When sending messages, all argument partials will be evaluated and replaced with the actual value depending on
each partial's configuration.

When receiving messages, the received message's arguments will be matched sequentially against the list of
partials, and any value objects and properties used in partials will be updated with the received values according to
each partial's configuration.

Partials ↑

Partials are the building blocks for constructing OSC message address and argument descriptions. The partials will
be evaluated from left to right according to their configuration when producing the actual address and arguments
of a message.

Partials can be added to the address and argument lists using the plus button on the right and selecting one of the
possible partial types.

A partial can be of the following types:

CONSTANTCONSTANTCONSTANTCONSTANT
A constant value.

INDEXINDEXINDEXINDEX
The current index of the control in its parent list of child controls.

VALUEVALUEVALUEVALUE
The current value of one of the control's value objects.

PROPERTYPROPERTYPROPERTYPROPERTY
The current value of one of the control's properties.

A partial can be selected and the selected partial can be deleted by pressing the DELETE key on desktop platforms,
or right-clicking (long-pressing on mobile platforms) on the partial and confirming the delete in the context menu.

When a partial is selected, more configuration options will be shown depending on type of the partial and if the
partial is part of the message address or argument list. Possible options include scaling the value and conversion
to one of the following types:

BOOLEAN
INTEGER
FLOAT
STRING

Scaling is applied using the following calculation:

out = min + in * (max - min)

The order of partials can be changed by dragging a partial to a new position inside the list.

→ TouchOSC Manual

Editor · Messages · Local

A control can have multiple local messages configured. Local messages act like a direct connection between
controls to change values and properties locally.

A control can be both the source and target of a local message, for example changing its own color based on the
state of its touch value object.

On desktop platforms, a local connection between controls can be quickly created in the editor by holding down
the ALT key and drawing a connection between source and target controls. On all platforms, the target can be
picked using the picker icon in the target row.

Enabled
Trigger
Source
Target
Scale
Conversion

Enabled ↑

The enabled state of the message.

If a message is not enabled, it will not be sent.

Trigger ↑

The trigger conditions for the message to be sent.

If the message enabled flag is set to on, it will be sent only if any of the value objects enabled here change, and only
if the configured change condition is being met.

Any of the control's values can be enabled individually here, with one of the possible change conditions of:

ANYANYANYANY - Any change in value will cause the message to be sent
RISERISERISERISE - Any change causing the value to increase will cause the message to be sent
FALLFALLFALLFALL - Any change causing the value to decrease will cause the message to be sent

Source ↑

The source value to be sent to the target control.

The source value can be one of the following types:

CONSTANTCONSTANTCONSTANTCONSTANT
A constant value.

INDEXINDEXINDEXINDEX
The current index of the control in its parent list of child controls.

VALUEVALUEVALUEVALUE
The current value of one of the control's value objects.

PROPERTYPROPERTYPROPERTYPROPERTY
The current value of one of the control's properties.

Target ↑

The target value and control of the message.

Enabling target picking mode using the picker icon on the right will assign the next selected control in the editor as
the target control of the message. Pressing the picker icon again (or pressing the ESC key on desktop platforms)
will cancel target picking mode.

After selecting a target control, the name of the target control will be displayed and clicking on the target control's
name will select the control in the editor.

The target value menu will be populated with the available target values. The target value can be one of the
following types:

VALUEVALUEVALUEVALUE
One of the target control's value objects.

PROPERTYPROPERTYPROPERTYPROPERTY
One of the target control's properties.

Scale ↑

The scaling to apply to the source value.

Scaling is applied using the following calculation:

out = min + in * (max - min)

Conversion ↑

The type conversion to apply to the source value.

The conversion can be one of the following types:

BOOLEAN
INTEGER
FLOAT
STRING

→ TouchOSC Manual

Editor · Messages · Gamepad

A control can have multiple gamepad messages configured. Gamepad messages can only be received and not sent.

A gamepad message is configured to wait for a certain game controller input on one or multiple configured
gamepad connections, and apply the received input value to one of the control's values or properties.

For portability between platforms, and to allow TouchOSC documents to be shared with users using different input
devices, all game controllers are mapped to a standard Xbox 360-like controller layout.

This is the same strategy as employed by the ubiquitous Steam game client and the popular SDL2 game
development library, and we support the same mapping database format as these.

On desktop platforms, if no mapping can be found for the game controller in the included database, TouchOSC will
output a warning to the log view upon connection.

It is possible to update and customize TouchOSC's internal database of controller mappings by placing a text file
following SDL2's game controller database format in TouchOSC's configuration directory, found at the following
location for each platform:

Windows:Windows:Windows:Windows:

%AppData%/TouchOSC/

macOS:macOS:macOS:macOS:

~/Library/Application Support/net.hexler.lex/

Linux:Linux:Linux:Linux:

~/.TouchOSC/

TouchOSC will look for a file called gamecontrollerdb.txt at this path once at application launch, and if found, will
try to load and apply that configuration.

Enabled
Connections
Input
Target
Scale
Conversion

Enabled ↑

The enabled state of the message.

If a message is not enabled, it will not be processed when a matching input is received.

Connections ↑

The connections that the message should be received on. The numbers refer to the numbered configured game
controllers in the Gamepad connections configuration.

The special connection labelled '∞' enables receiving messages on all connections.

Input ↑

The type of input received from the game controller.

The input can be one of the following:

STICK_LEFT_XSTICK_LEFT_XSTICK_LEFT_XSTICK_LEFT_X
The x-axis of the left analog stick

STICK_LEFT_YSTICK_LEFT_YSTICK_LEFT_YSTICK_LEFT_Y
the y-axis of the left analog stick

STICK_RIGHT_XSTICK_RIGHT_XSTICK_RIGHT_XSTICK_RIGHT_X
The x-axis of the right analog stick

STICK_RIGHT_YSTICK_RIGHT_YSTICK_RIGHT_YSTICK_RIGHT_Y
The y-axis of the right analog stick

TRIGGER_LEFTTRIGGER_LEFTTRIGGER_LEFTTRIGGER_LEFT
The left trigger at the back of the controller

TRIGGER_RIGHTTRIGGER_RIGHTTRIGGER_RIGHTTRIGGER_RIGHT
The right trigger at the back of the controller

BUTTON_UPBUTTON_UPBUTTON_UPBUTTON_UP
The up button on the directional pad

BUTTON_DOWNBUTTON_DOWNBUTTON_DOWNBUTTON_DOWN
The down button on the directional pad

BUTTON_LEFTBUTTON_LEFTBUTTON_LEFTBUTTON_LEFT
The left button on the directional pad

BUTTON_RIGHTBUTTON_RIGHTBUTTON_RIGHTBUTTON_RIGHT
The right button on the directional pad

BUTTON_ABUTTON_ABUTTON_ABUTTON_A
The face button often labelled A

BUTTON_BBUTTON_BBUTTON_BBUTTON_B
The face button often labelled B

BUTTON_XBUTTON_XBUTTON_XBUTTON_X
The face button often labelled X

BUTTON_YBUTTON_YBUTTON_YBUTTON_Y
The face button often labelled Y

BUTTON_STICK_LEFTBUTTON_STICK_LEFTBUTTON_STICK_LEFTBUTTON_STICK_LEFT
The button input pressing down on the left analog stick

BUTTON_STICK_RIGHTBUTTON_STICK_RIGHTBUTTON_STICK_RIGHTBUTTON_STICK_RIGHT
The button input pressing down on the right analog stick

BUMPER_LEFTBUMPER_LEFTBUMPER_LEFTBUMPER_LEFT
The left bumper button at the back of the controller

BUMPER_RIGHTBUMPER_RIGHTBUMPER_RIGHTBUMPER_RIGHT
The right bumper button at the back of the controller

BUTTON_STARTBUTTON_STARTBUTTON_STARTBUTTON_START
The center button often labelled 'Start'

BUTTON_SELECTBUTTON_SELECTBUTTON_SELECTBUTTON_SELECT
The center button often labelled 'Select' or 'Back'

BUTTON_HOMEBUTTON_HOMEBUTTON_HOMEBUTTON_HOME
The button at the center of the controller, often showing a logo of the controller manufacturer or game
console

Target ↑

The target value or property of the message.

When the configured input is detected on any of the enabled connections, the received numeric value of the input
will be written to the target value or property selected here, after scaling and conversion has been applied.

The target can be one of the following types:

VALUEVALUEVALUEVALUE
One of the target control's value objects.

PROPERTYPROPERTYPROPERTYPROPERTY
One of the target control's properties.

Scaling ↑

The scaling to apply to the input value.

The input value will be scaled in the same way as other received message values according to the following
formula, which is the inverse of the scaling that is applied to outgoing messages of all message types:

value = (input - min) / (max - min)

It's easiest to think of this inverse scaling this way: Setting min and max to the expected minimum and maximum
input values received from the game controller, this transformation will produce a value ranging from 0 to 1.

Conversion ↑

The type conversion to apply to the input value.

The conversion can be one of the following types:

BOOLEAN
INTEGER
FLOAT
STRING

→ TouchOSC Manual

Editor · Script

The script editor UI for editing script source code. Please see the Scripting API section of the manual for details
about the script language and available functions and objects.

Editor
Summary
Log
Find/Replace
Run

Editor ↑

The text editor for editing script source code with syntax highlighting and completion.

Every time the text editor looses input focus, the script will be compiled and checked for errors, and if any, the error
source line will be highlighted and a short error summary will be displayed in the summary display. For the full error
message, open the log view.

The script will not be executed until either switching the editor to control surface mode, or the run button is
pressed.

In the top right corner there is a button to maximize the editor and fill the area of the panel on the right for easier
editing of longer scripts.

Summary ↑

A short summary of the error message when compiling the script source.

Log ↑

Open the application's log view and show the script messages page.

Find/Replace ↑

Toggle the editor's find/replace tools.

On desktop operating systems the standard keyboard shortcuts for find/replace can also be used to show these
tools.

Run ↑

Compile and execute the script code immediately.

Script code is automatically compiled and checked for errors every time the text editor looses input focus, and all
scripts will be executed when switching from editor to control surface mode.

The run button will compile and execute the script code immediatelyimmediatelyimmediatelyimmediately, making it possible to test and run scripts in
the editor without switching to control surface mode.

→ TouchOSC Manual

Editor · Network

The application's editor network feature allows one instance of the application to act as editor server on the
network and lets multiple other instances on the network connect as clients.

The editor server will broadcast the current document and all editor actions to all connected clients in real-time.

The editor clients will be locked into control surface mode and not be able to make any edits while connected to
the server. Once disconnected from the server, the document can be edited and saved on the client.

Connected clients will still be able to use the control surface with all messages and scripts fully functional,
making it possible to test the configuration of a control surface immediately, while making changes on the server.

NOTENOTENOTENOTE that the current values of a control's value objects will only be transmitted once after the initialonce after the initialonce after the initialonce after the initial
connectconnectconnectconnect or if explicitly editedexplicitly editedexplicitly editedexplicitly edited on the server, as it would interfere with the ability to test a control surface's
functionality and use, if values would be continually updated or reset to the current state of the server
document.

Client
Manual Connect
Available Servers

Server
Enabled

Client ↑

Manual Connect ↑

Enter an editor server's IP address or host name and port number manually to connect. The pre-filled port number
is set to the application's default port number for editor servers.

Available Servers ↑

The list of available servers will be populated with discovered hosts that have the server option enabled.

TouchOSC uses Zero-configuration networking (zeroconf) to discover editor network servers on the local network.
If none can be found, please use the Manual Connect option to connect to an editor server.

Discovered editor hosts will be displayed with host name and a connect button to initiate the connection to the
selected server.

If an editor server host is reachable via multiple network interfaces or IP addresses, a button will be displayed to
expand details about the possible IP addresses to connect to and allow connection via each one individually.

Server ↑

Enabled ↑

Enables the editor network's server portion to listen for incoming client connections.

NOTE:NOTE:NOTE:NOTE: For security reasons the state of this flag is not automatically saved and restored between application
runs. We might change this behavior in the future and add additional security measures.

NOTE:NOTE:NOTE:NOTE: Starting with version 1.4.4.236 on desktop platforms, the server can be automatically enabled on
startup using the command line parameter: --editor.network.state=SERVER

→ TouchOSC Manual

Connections

TouchOSC supports multiple connection types for messages to be sent and received on.

Each type of connection can have between four and ten separate, simultaneous connections configured, each with
separate send and receive endpoints.

Each of these numbered connections can be enabled individually in a message's configuration.

MIDI
OSC
Bridge
Gamepad

https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#triggers
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/connections-osc
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/editor-control-properties
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/editor-control-properties
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/editor-control-properties
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/connections-gamepad
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/editor-control-properties
https://en.wikipedia.org/wiki/Xbox_360_controller#Layout
https://hexler.net/touchosc/manual/editor-interface#log-view
https://github.com/gabomdq/SDL_GameControllerDB
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/connections-gamepad
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/editor-control-properties
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-interface#log-view
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-controls-values
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://en.wikipedia.org/wiki/Zeroconf
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages
https://hexler.net/touchosc/manual/editor-messages

MIDI ↑

MIDI connections can be used for sending and receiving messages according to the MIDI 1.0 protocol specification
↗.

We are planning to add support for the MIDI 2.0 protocol specification ↗ in the future, once more supporting
hardware and software is available.

See the section on MIDI connection configuration for details.

OSC ↑

OSC connections can be used for sending and receiving messages according to the Open Sound Control ↗
protocol.

See the section on OSC connection configuration for details.

Bridge ↑

Bridge connections act as virtual MIDI in/out ports that transmit MIDI messages over the network to and from a
host on the local network running the TouchOSC Bridge application.

On iOS devices it is also possible to connect to an instance of the TouchOSC Bridge application using a USB cable
connection.

Each of these configured connections can then be selected as input and output ports in the MIDI connection
configuration.

See the section on Bridge connection configuration for details.

Gamepad ↑

Gamepad connections allow receiving input from connected game controllers.

See the section on Gamepad connection configuration for details.

→ TouchOSC Manual

Connections · MIDI

TouchOSC allows to configure ten separate MIDI connections, each with freely assignable input and output ports.
Each of these connections can be individually enabled for a control's MIDI messages to be sent and received on.

All enabled TouchOSC Bridge connections can also be configured here as input and output ports just like regular
MIDI ports - with TouchOSC transparently handling the transport of MIDI messages over the network via these
ports.

On macOS, iOS and Android operating systems there will be additional buttons at the top of this page, to switch to
the TouchOSC Bridge connections configuration, and to open the configuration dialog for Bluetooth MIDI
controllers.

Enable
Expand
Send Port
Receive Port
Browse

Enable ↑

The checkbox at the top left toggles the enabled state of the connection. If a connection is not enabled it will not
send or receive any messages.

Expand ↑

The arrow button in the top right toggles the display between editable details of the connection and a short, read-
only summary.

Send Port ↑

The name of the MIDI output port to send messages on. This can be any name you enter into the text field or an
existing port name found on the system using the Browse function.

If you leave this field empty or no MIDI output port by the specified name is found at runtime, no messages will be
sent.

Receive Port ↑

The name of the MIDI input port to receive messages from. This can be any name you enter into the text field or an
existing port name found on the system using the Browse function.

If you leave this field empty or no MIDI input port by the specified name is found at runtime, no messages will be
received.

Browse ↑

The browse button will list all existing input and output ports currently found on the system, as well as all enabled
TouchOSC Bridge connections for selection. Both lists are updated in real-time and will show any ports added while
displaying.

→ TouchOSC Manual

Connections · OSC

TouchOSC allows to configure ten separate OSC connections, each with freely assignable send destination and
receive port. Each of these connections can be individually enabled for a control's configured OSC messages to be
sent and received on.

Each connection's receive port can also be advertised on the network using the Zero Configuration Networking
(Zeroconf ↗) standard for other OSC enabled applications and devices to discover.

Enable
Expand
Type
Host
Send Port
Receive Port
Network Info
Zeroconf
Browse

Enable ↑

The checkbox at the top left toggles the enabled state of the connection. If a connection is not enabled it will not
send or receive any messages.

Expand ↑

The arrow button in the top right toggles the display between editable details of the connection and a short, read-
only summary.

Type ↑

The type of OSC connection to establish. TouchOSC supports three connection types to transport OSC messages on:

UDPUDP

A UDP/IP connection.

The user datagram protocol (UDP) is the most common protocol for communication between OSC enabled
applications and devices. If you are unsure which type of connection to choose, it is highly likely that this is
the correct one.

TCP ClientTCP Client

A TCP/IP client connection to another host.

If the connection to the other host fails for any reason, the connection will automatically attempt to re-
connect periodically.

TCP ServerTCP Server

A TCP/IP server connection other clients can connect to.

When using one of the TCP/IP connection types, the FramingFraming option will become available to choose one of the
following message framing methods:

OSC 1.0OSC 1.0

TouchOSC will use the simple message framing scheme (size-count-preamble) suggested by the OSC 1.0
specification ↗ :

"...the stream should begin with an int32 giving the size of the first packet, followed by the contents of the
first packet, followed by the size of the second packet, etc."

OSC 1.1OSC 1.1

TouchOSC will use the SLIP (RFC1055) with double END character encoding as required by the OSC 1.1
specification ↗.

Host ↑

For the connection types UDPUDP and TCP ClientTCP Client a host name or IP address can be entered as the destination for sent
messages. To browse for other applications and devices that advertise their OSC receivers of the selected
connection type, use the Browse function.

If you leave this field empty or the destination host is not found at runtime, no messages will be sent.

Send Port ↑

For the connection types UDPUDP and TCP ClientTCP Client a port number can be entered as the destination for sent messages.
This field will also be completed when selecting any of the discovered receivers using the Browse function.

If you leave this field empty no messages will be sent.

Receive Port ↑

For the connection types UDPUDP and TCP ServerTCP Server a port number can be entered to listen for received messages or
client connections respectively.

If you leave this field empty no messages will be received.

Network Info ↑

The small info icon next to the Receive Port input field will open a dialog listing all IP addresses of all available and
active network interfaces of the current machine.

By default all IPv4 and IPv6 addresses are shown, to exclude IPv6 addresses, uncheck the Include IPv6Include IPv6 checkbox.

To refresh the list manually, click the RefreshRefresh button to update the list.

Zeroconf ↑

If the Send Port field has a value, the option to advertise the connection's OSC receiver on the network using the
Zeroconf ↗ standard becomes available with the following options:

DisabledDisabled
Disables the advertising of the connection's OSC receiver on the network.

DefaultDefault
The application will use the local name of the device for advertising the connection's OSC receiver on the
network.

CustomCustom
Use a custom service name for advertising the connection's OSC receiver on the network.

LogicPadLogicPad
Emulate TouchOSC Mk1's behaviour for advertising the connection's OSC receiver on the network for use with
the included LogicPad layout.

LogicTouchLogicTouch
Emulate TouchOSC Mk1's behaviour for advertising the connection's OSC receiver on the network for use with
the included LogicTouch layout.

Browse ↑

The browse button next to each connection's HostHost field will list all OSC receivers compatible with the connection's
type found on the network using the Zeroconf ↗ standard.

Selecting any of the available results will fill in both the HostHost and Send PortSend Port fields for the connection. In case the
discovered OSC receiver is advertised using multiple IP addresses, these will be listed in a sub-menu under the
host's name for individual selection.

The list of results is updated in real-time and will show any additional receivers discovered while displaying.

→ TouchOSC Manual

Connections · Bridge

TouchOSC allows to configure five separate connections to connect to instances of the TouchOSC Bridge
application.

TouchOSC Bridge acts as a virtual MIDI interface, transparently transmitting MIDI messages to and from another
host on the network, or using a USB cable connection on iOS devices.

Each enabled Bridge connection can be individually selected as MIDI input and output port in the MIDI connections
configuration.

Enable
Host
Browse

Enable ↑

The checkbox at the top left toggles the enabled state of the connection. If a connection is not enabled it will not
send or receive any messages.

Host ↑

Enter a host name or IP address of the device running TouchOSC Bridge. To browse for available TouchOSC Bridge
instances on the network, use the Browse function.

The reserved connection name <USB><USB> can be used on iOS devices to connect to a TouchOSC Bridge instance
running on a computer connected using a USB cable.

If you leave this field empty no messages will be sent or received.

Browse ↑

The browse button next to each connection's HostHost field will list all TouchOSC Bridge instances found on the
network.

On iOS devices, an additional <USB><USB> connection will be available to connect to a TouchOSC Bridge instance
running on a computer connected using a USB cable.

The list of results is updated in real-time and will show any additional instances discovered while displaying.

→ TouchOSC Manual

Connections · Gamepad

TouchOSC can be configured to receive inputs from four separate, connected game controllers. Each of these
connections can be enabled for a control's Gamepad messages to receive input from.

Enable
Controller
Browse

Enable ↑

The checkbox at the top left toggles the enabled state of the connection. If a connection is not enabled it will not
receive any input.

Controller ↑

The name of the game controller to receive input from. Choose any of the currently connected game controllers
found on the system using the Browse function.

The configured controller can be removed from the connection using the x button.

The configured controller's GUID will be saved to the configuration between application runs or when the selected
controller is disconnected and later re-connected.

Browse ↑

The browse button will list all connected game controllers currently found on the system. The list will be updated in
real-time and will reflect any controllers added or removed while displaying.

→ TouchOSC Manual

Preferences · General

User interface scale
Updates
Show comments after loading
Send anonymous usage statistics
Enable debug logging

User interface scale ↑

Global scaling factor for all of TouchOSC's user interface. Needs a restart of the application to be applied.

Note:Note: This is an experimental feature and maybe cause some user interface controls to behave or render
unpredictably.

Updates ↑

Automatically contact the hexler.net website to check for an updated version of the application on startup, at most
once a day.

The ChannelChannel menu allows for selecting either "Stable" or "Beta" update channels. Please note that beta releases
are for previewing upcoming features before a wider release and are subject to change without notice and might
not function as expected. Use at your own risk.

Note:Note: No additional information other than the application version, operating system type and architecture will be
transmitted to the website during this check.

Show comments after loading ↑

If a document has values for the "Creator" or "Comments" document properties, display these after loading has
finished.

Send anonymous usage statistics ↑

This enables sending of anonymous usage statistics back to the hexler.net website.

This may include data about your system and use of the application, such as operating system, version and
language, hardware specifics such as amount of RAM and number of CPU cores, type of GPU, graphics API and
others.

We use this anonymous data to determine the future direction of the application's design and the viability of
continued support for less popular hardware/software configurations. Therefore we strongly recommend leaving
this setting enabled to help us make informed decisions about the application's future.

For more information see our Privacy Policy.

Enable debug logging ↑

This will cause the application to log a much larger amount of information about its internal operation.

Note:Note: This will most certainly cause significant overhead and slow down, and is only encouraged when asked to do
so by one of our developers or support staff and only while diagnosing a problem.

The Show logsShow logs button will open the operating system's file browser at the location of TouchOSC's log files.

→ TouchOSC Manual

Preferences · Editor

Appearance

Show Grid
Snap to Grid
Show Rulers

Behaviour

Create default MIDI messages
Create default OSC messages
Assign new names on copy/paste
Pager navigation only with ALT key

Script

Font Size
Word Wrap
Code Highlighting
Code Completion

Appearance ↑

Show Grid

Toggle the rendering of a grid in the background of the editing surface and configure spacing, appearance and color.

Snap to Grid

Toggle whether controls will snap to the editor grid when being positioned.

Show Rulers

Toggle the rendering of rulers at the top and left edges of the editing surface.

Behaviour ↑

Create default MIDI messages

When creating a new control, automatically create and configure a suitable MIDI message as well.

Create default OSC messages

When creating a new control, automatically create and configure a suitable OSC message as well.

Assign new names on copy/paste

When copy/pasting a control, automatically assign a new name to the control.

Pager navigation only with ALT key

When editing a document, a Pager control's navigation bar is enabled by default and allows to switch between
pages as one would when in control surface mode. This option enables this behaviour only when the ALT key is held
down at the same time.

Note:Note: This option is only available on desktop platforms.

Script ↑

Font Size

Font size used by the script editor.

Word Wrap

Enables word wrapping in the script editor.

Code Highlighting

Enables colored code highlighting in the script editor.

Code Completion

Enables code completion in the script editor.

→ TouchOSC Manual

Preferences · Control Surface

Display

Orientation
Filter
Allow sleep

Padding

Back Button

Double-tap
Vertical
Horizontal

Display ↑

Orientation

Determine the rotation transformation the control surface will be rendered with.

NORTHNORTH is the default and will render the control surface the same as previewed in the editor.

AUTOAUTO will cause the orientation to be automatically chosen to maximize the space the control surface will occupy
considering the available device screen size and rotation.

NOTE:NOTE: This setting does not change your device's automatic rotation or rotation lock preferences in any way. Please
use your device's native options for these settings in combination with this application setting to achieve the
optimal rotation behaviour for your setup.

Filter

The filter selection allows an additional post-processing image filter to be applied to the control surface when
rendering.

Allow sleep

Allow the device to sleep when in control surface mode.

The default is to keep the device and display on at all times when in control surface mode.

NOTE:NOTE: This setting is only available on mobile devices.

Padding ↑

Configure the amount of space to reserve at the top, bottom, left and right edges of the screen when rendering the
control surface view.

https://hexler.net/touchosc/manual/complete#top
https://www.midi.org/specifications/midi1-specifications
https://www.midi.org/specifications/midi-2-0-specifications
https://hexler.net/touchosc/manual/connections-midi
https://hexler.net/touchosc/manual/complete#top
https://opensoundcontrol.stanford.edu/
https://hexler.net/touchosc/manual/connections-osc
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc#resources
https://hexler.net/touchosc/manual/connections-midi
https://hexler.net/touchosc/manual/connections-bridge
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/connections-gamepad
https://hexler.net/touchosc/manual/editor-messages-midi
https://hexler.net/touchosc/manual/connections-bridge
https://hexler.net/touchosc/manual/connections-bridge
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-osc
http://www.zeroconf.org/
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
http://opensoundcontrol.org/spec-1_0.html#osc-packets
http://opensoundcontrol.org/spec-1_1.html
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
http://www.zeroconf.org/
https://hexler.net/touchosc/manual/complete#top
http://www.zeroconf.org/
https://hexler.net/touchosc/manual/connections-midi
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-gamepad
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/privacy-policy
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top

Back Button ↑

Options related to the back button for exiting the control surface view and returning to the editor view.

Double-tap

Configure the back button to require a double-tap instead of a single press.

Vertical

Configure the vertical alignment of the back button.

Horizontal

Configure the horizontal alignment of the back button.

→ TouchOSC Manual

Preferences · Script

Timeout
Invalid API Usage

Timeout ↑

In Control Surface mode, long-running scripts will be terminated to prevent the application from stalling.

SHORTSHORT
The default setting, any one script is allowed to take up to ~200ms.

LONGLONG
For older devices running complex layouts it might be helpful to extend the timeout to ~2000ms. Please use
this setting with caution and only if absolutely necessary.

NOTENOTE that in editor mode, the timeout will always be longer than either of these settings to allow for long-running,
manually launched scripts to help with editing actions.

Invalid API Usage ↑

When invalid API usage is detected (e.g. accessing non-existent control properties or values, or calling API
functions with wrong arguments) the following action will be taken:

ERRORERROR
If the Log View is active an error message will be printed to the SCRIPT log and the script will be stopped.

WARNWARN
If the Log View is active a warning message will be printed to the SCRIPT log and the script will continue to
execute. If the API call in question expects a return value, nil will be returned.

IGNOREIGNORE
No message will be printed in the SCRIPT log and the script will continue to execute. If the API call in
question expects a return value, nil will be returned.

→ TouchOSC Manual

Preferences · Log View

Font Size
Keep log lines
Display

Timestamps
Control name as path
Open in separate window

Font Size ↑

Font size used by the log view.

Keep log lines ↑

Number of log lines to keep in the scroll-back history.

Note:Note: Setting this option to a large value may drastically impact performance.

Display ↑

Timestamps

Display a timestamp for each logged event.

Control name as path

Display a control's name as path, with all parent container names separated by a forward slash.

Open in separate window

Open the log view in a separate window instead of a split-view embedded in the main application window.

→ TouchOSC Manual

Preferences · Import

Options that apply to the import of touchosc files.

TouchOSC Mk1 defines some OSC messages that are either enabled globally in the application's OSC options or
automatically enabled for all controls. To provide backwards compatibility some of the following preferences offer
the option to generate these messages automatically on import.

Appearance

Apply Classic Style

Global OSC Messages

Ping
Accelerometer
Vibrate

Control OSC Messages

Touch
Visibility
Position
Size
Color

Control Key Messages

Convert to OSC messages

Appearance ↑

Apply Classic Style

This option will configure the properties of all imported controls to closely resemble the look of the original control
rendering of the TouchOSC Mk1 app.

Global OSC Messages ↑

Ping

If enabled, will cause a script to be generated at document level to periodically send a /ping OSC message on all
configured OSC connections.

Note:Note: As the globally configured value for the delay of this message can not be read from the TouchOSC Mk1 app's
preferences, please see the script source at the document level to manually change this value.

Accelerometer

If enabled, will cause a script to be generated at document level to send a /accxyz OSC message with three float
parameters sampled from the device's accelerometer hardware (if any) on all configured OSC connections on each
update.

Vibrate

If enabled, will cause a script to be generated at document level to receive a /vibrate OSC message and trigger a
short vibration using the vibrate script function.

Control OSC Messages ↑

Touch

If enabled, will cause a send-only /<control-path>/touch OSC message to be generated that will send when the
control's touch value changes.

Visibility

If enabled, will cause a receive-only /<control-path>/visibility OSC message to be generated that will apply
the received value to the control's visibility property.

Position

If enabled, will cause receive-only /<control-path>/position/x and /<control-path>/position/y OSC
messages to be generated that will apply the received value to the control frame's x and y properties respectively.

Size

If enabled, will cause receive-only /<control-path>/size/w and /<control-path>/size/h OSC messages to be
generated that will apply the received value to the control frame's w and h properties respectively.

Color

If enabled, will cause a receive-only /<control-path>/color OSC message and an associated script to be
generated that will apply the received string value to the control's color property. The script handles the
conversion of TouchOSC Mk1's fixed color names to equivalent RGBA color values.

Control Key Messages ↑

Convert to OSC messages

If enabled, will convert all key messages found in the source layout to OSC messages.

These messages will be in the same format the TouchOSC Bridge expects, and therefore can be used to trigger the
same key press and release events as TouchOSC Mk1.

→ TouchOSC Manual

Preferences · MIDI

General

Read NOTE OFF message velocity

Virtual Ports

Create MIDI input
Create MIDI output

General ↑

Read NOTE OFF message velocity

If enabled will forward all received NOTE OFF message velocity values unmodified. Otherwise, NOTE OFF message
velocity values will be automatically set to zero upon reception.

Virtual Ports ↑

NOTE:NOTE: These options are currently not available on Android.

Create MIDI input

Controls the creation of a virtual MIDI input port named TouchOSC.

Create MIDI output

Controls the creation of a virtual MIDI output port named TouchOSC.

→ TouchOSC Manual

Control Reference

In this overview we describe all properties and values that are specific to each control type. For a description of
common properties and values that all types of controls share, please see Properties and Values.

All properties and values can also be accessed from within scripts. Please see the scripting API's Properties &
Values section for information about the field names and types to use for script access.

BOX
BUTTON
LABEL
TEXT
FADER
XY
RADIAL
ENCODER
RADAR
RADIO
GROUP
PAGER
GRID

BOX ↑

A box control is a simple shape with no behavior. It is meant to be efficient to render, for creating decorative
elements and backgrounds or to be moved and positioned using messages and script.

Properties

NameName DescriptionDescription

Shape The shape of the control

BUTTON ↑

A simple button control with properties to control the press/release behavior. As it uses a FLOAT value for its
display, it can be also used as a simple LED display.

Properties

NameName DescriptionDescription

Shape The shape of the control

Type

The type of button.

MomentaryMomentary - A push button
Toggle ReleaseToggle Release - A toggle button, toggle on release
Toggle PressToggle Press - A toggle button, toggle on press

Press Enable the press event for this button.

Release Enable the release event for this button.

Value
Position

If this property is set to on, the button will use the position of the pointer event to calculate its
value. The calculation will take the value of the Orientation property into account.

Values

NameName TypeType DescriptionDescription

x FLOAT
The amount of "pressure" on the button from fully released to fully pressed. The button will
be rendered using this value as alpha value for the color of the button fill.

LABEL ↑

A single-line text display.

Properties

NameName DescriptionDescription

Font

The typeface for rendering the text.

DEFAULTDEFAULT - The default, variable-width font
MONOSPACEDMONOSPACED - A monospaced, fixed-width font

Size The font size.

Length The maximum length of the text.

Alignment Horizontal and vertical alignment of the text inside the control.

Color The text color.

Clip
Controls the clipping of the rendered text to the control's frame. NoteNote that disabling this property
can significantly improve rendering performance in certain cases.

Values

NameName TypeType DescriptionDescription

text STRING The display text.

TEXT ↑

A multi-line text display.

Properties

NameName DescriptionDescription

Font

The typeface for rendering the text.

DEFAULTDEFAULT - The default, variable-width font
MONOSPACEDMONOSPACED - A monospaced, fixed-width font

Size The font size.

Alignment Horizontal and vertical alignment of the text inside the control.

Color The text color.

Clip
Controls the clipping of the rendered text to the control's frame. NoteNote that disabling this property
can significantly improve rendering performance in certain cases.

Wrap Controls the word wrapping of the rendered text to the control's frame.

Values

NameName TypeType DescriptionDescription

text STRING The display text.

FADER ↑

A fader control.

Properties

NameName DescriptionDescription

Cursor

Show a cursor.

ALWAYSALWAYS - Show always
ACTIVEACTIVE - Show only if any active pointers
INACTIVEINACTIVE - Show only if no active pointers

Bar

Show a value bar.

ALWAYSALWAYS - Show always
ACTIVEACTIVE - Show only if any active pointers
INACTIVEINACTIVE - Show only if no active pointers

Centered Render the value bar from the center.

Response

Type of response to pointer input

ABSOLUTEABSOLUTE - Jump to pointer position
RELATIVERELATIVE - Change relative to pointer position

Factor Response factor for relative response, in percent of pointer position change.

Grid Render grid lines and the number of grid lines to render.

Grid Color The grid line color.

Values

NameName TypeType DescriptionDescription

x FLOAT The value position.

XY ↑

A two-dimensional fader control.

Properties

NameName DescriptionDescription

Cursor

Show a cursor.

ALWAYSALWAYS - Show always
ACTIVEACTIVE - Show only if any active pointers
INACTIVEINACTIVE - Show only if no active pointers

Lines

Show value lines.

ALWAYSALWAYS - Show always
ACTIVEACTIVE - Show only if any active pointers
INACTIVEINACTIVE - Show only if no active pointers

Lock X Lock the x value for pointer input. The value can still be changed through messages and script.

Lock Y Lock the y value for pointer input. The value can still be changed through messages and script.

Response

Type of response to pointer input

ABSOLUTEABSOLUTE - Jump to pointer position
RELATIVERELATIVE - Change relative to pointer position

Factor Response factor for relative response, in percent of pointer position change.

Grid X Render horizontal grid lines and the number of grid lines to render.

Grid Y Render vertical grid lines and the number of grid lines to render.

Grid Color The grid line color.

Values

NameName TypeType DescriptionDescription

x FLOAT The x value position.

y FLOAT The y value position.

RADIAL ↑

A rotary fader control.

Properties

NameName DescriptionDescription

Inverted Invert the value range.

Centered Display the value from the center of the value range.

Response

Type of response to pointer input

ABSOLUTEABSOLUTE - Jump to pointer position
RELATIVERELATIVE - Change relative to pointer position

Factor Response factor for relative response, in percent of pointer position change.

Grid Render grid lines and the number of grid lines to render.

Grid Color The grid line color.

Values

NameName TypeType DescriptionDescription

x FLOAT The value position.

ENCODER ↑

A circular encoder control.

Properties

NameName DescriptionDescription

Cursor

Show a cursor.

ALWAYSALWAYS - Show always
ACTIVEACTIVE - Show only if any active pointers
INACTIVEINACTIVE - Show only if no active pointers

Response

Type of response to pointer input

ABSOLUTEABSOLUTE - Jump to pointer position
RELATIVERELATIVE - Change relative to pointer position

Factor Response factor for relative response, in percent of pointer position change.

Grid Render grid lines and the number of grid lines to render.

Grid Color The grid line color.

Values

NameName TypeType DescriptionDescription

x FLOAT The value position.

y FLOAT The direction of change of the value position.

RADAR ↑

A circular XY control, measuring distance from center and angle.

Properties

NameName DescriptionDescription

Cursor

Show a cursor.

ALWAYSALWAYS - Show always
ACTIVEACTIVE - Show only if any active pointers
INACTIVEINACTIVE - Show only if no active pointers

Lines

Show lines for distance and angle.

ALWAYSALWAYS - Show always
ACTIVEACTIVE - Show only if any active pointers
INACTIVEINACTIVE - Show only if no active pointers

Lock X Lock the x value for pointer input. The value can still be changed through messages and script.

Lock Y Lock the y value for pointer input. The value can still be changed through messages and script.

Grid X Render grid lines for distance and the number of grid lines to render.

Grid Y Render grid lines for angle and the number of grid lines to render.

Grid Color The grid line color.

Values

NameName TypeType DescriptionDescription

x FLOAT The distance from the center.

y FLOAT The angle. The calculation will take the value of the Orientation property into account.

RADIO ↑

A single value selection from a number of discrete values.

Properties

NameName DescriptionDescription

Steps The number of discrete values.

Type

The type of display

SelectSelect - Highlight only the active value

https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-interface#log-view
https://hexler.net/touchosc/manual/editor-interface#log-view
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-functions-global#vibrate
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-properties
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/script-properties-and-values
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-properties#orientation
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-properties#orientation
https://hexler.net/touchosc/manual/complete#top

Type SelectSelect - Highlight only the active value
MeterMeter - Highlight all values up to the active one

Values

NameName TypeType DescriptionDescription

x INTEGER The selected value.

GROUP ↑

A simple container for child controls. A group will clip the rendering of any contained child controls to its display
area.

PAGER ↑

A paged container for child controls. A pager contains a number of group child controls ("pages") and will display
only the active one based on its pagepage value. A pager control can be ungrouped to extract the individual page group
child controls.

Properties

NameName DescriptionDescription

Bar Display the pager tab bar.

Bar Size The size of the pager tab bar.

Double Tap Require a double tap on the tab bar instead of a single press to change the active page.

Labels Display the value of each child page's LabelLabel property on the tab bar.

Text Size Font size for labels on the tab bar, for both inactive page labels and the active page label.

Page Properties

NameName DescriptionDescription

Name The name of the child group control.

Label The text to display on the parent pager's tab bar for this page.

Background The background color of the page group control.

Tab Color
The colors to use for the parent pager's tab bar button for this page, for both active and inactive
states.

Text Color
The colors to use for the parent pager's tab bar button label for this page, for both active and
inactive states.

Values

NameName TypeType DescriptionDescription

page INTEGER The active page index.

GRID ↑

A container for a two-dimensional, uniform grid of child controls of the same type. A grid control can be ungrouped
to extract the individual child controls. The editor will display the child control type's properties in addition to the
grid control's own properties,

Properties

NameName DescriptionDescription

Type The type of child control.

X The number of columns in the grid.

Y The number of rows in the grid.

Start The corner of the grid to start from when creating the child controls.

Order The direction in which to proceed first in the grid when creating the child controls.

Naming The value to use when assigning the NameName property of the created child controls.

Exclusive
Whenever a child control's value changes, reset all other child controls' values of the same name
back to the default value.

→ TouchOSC Manual

Setup Examples

Examples, instructions and recipes on how to set up TouchOSC with other applications and hardware.

We'll be adding more of these in the future, so please check back again at a later time.

Getting Started

Protokol / MIDI
Protokol / OSC
Ableton Live

How-to's

Android USB MIDI
Resolume Wire
Steam Deck
Traktor Pro
Logic Pro

→ TouchOSC Manual

Setup · Android USB MIDI

Beginning with the Android 6.0 (Marshmallow) release, device makers can enable optional MIDI support in the
platform.

If your device manufacturer added support for the USB peripheral modeUSB peripheral mode, please follow these steps to enable it and
make your device appear as a MIDI device via the USB cable connection, which TouchOSC can then use to send and
receive MIDI messages.

Device Setup
TouchOSC Setup
Send MIDI messages

Device Setup ↑

While attached to a USB host, pull down from the top of screen and select the entry USB for ...USB for ... or similar. The exact
wording will depend on the customizations applied by your device manufacturer.

From the list of options that appear, select MIDIMIDI or similar. Again, the exact wording will depend on the
customizations applied by your device manufacturer.

AlternativelyAlternatively these options can also be found in the Android Developer Options at Settings Settings > Developer options >> Developer options >
Networking > Select USB ConfigurationNetworking > Select USB Configuration.

TouchOSC Setup ↑

By enabling the USB peripheral modeUSB peripheral mode on your Android device, the OS will also create MIDI input and output ports
that TouchOSC can use to send and receive MIDI messages via the USB cable connection.

In TouchOSC's MIDI connection configuration select the newly created Android USB Android USB Peripheral PortPeripheral Port (or similar)
for both the Send PortSend Port and Receive PortReceive Port fields.

Sadly, again, the exact naming of these ports will depend on the customizations applied by your device
manufacturer.

Send MIDI messages ↑

We'll use the Protokol application to confirm that the MIDI ports are visible to our USB host and that we can receive
MIDI messages sent from TouchOSC.

Protokol is our free tool for testing OSC and MIDI connections and messages. This is the same utility we use in-
house for testing our applications.

Launch the Protokol application, switch to the MIDIMIDI tab page, and check the checkbox next to EnabledEnabled

If all went well, you should see a connected MIDI endpoint in Protokol that is named similarly to your device, and
MIDI messages sent from TouchOSC via the USB connection should be received by Protokol.

As you might have guessed, the exact names of the MIDI ports that your device creates depend on the
customizations applied by your device manufacturer.

→ TouchOSC Manual

Setup · Resolume Wire

Resolume Wire is a modular node-based patching environment to create effects, mixers and video generators for
Resolume Arena & Avenue.

WireWire supports both MIDI and OSC control, but as OSC is the more flexible of the two and can be used both locally
and over a network, we'll walk through integrating OSC control from TouchOSC into your Wire project.

Enable OSC Input
Configure TouchOSC
Create OSC nodes
Print OSC messages

Enable OSC Input ↑

Open the WireWire preferences, switch to the OSCOSC section on the left and enable the OSC InputOSC Input.

Wire is now listening for incoming OSC messages at the IP AddressIP Address and Incoming PortIncoming Port number displayed here.

Configure TouchOSC ↑

Open TouchOSCTouchOSC and make sure that you are connected to the same network as the machine that is running WireWire.

⚠ If you are running the Windows operating system and choose to connect If you are running the Windows operating system and choose to connect via a networked connection,via a networked connection,
please note that the Windows firewall can prevent this setup from working. Should you please note that the Windows firewall can prevent this setup from working. Should you run intorun into
problems, please disable the Windows firewall temporarily and try again.problems, please disable the Windows firewall temporarily and try again.

Open TouchOSC's OSC connection settings.

Make sure Connection 1Connection 1 is enabled and set to type UDPUDP.

Use the BrowseBrowse button to search for and select Wire's OSC input on the network and fill in the required values
automatically.

If the Wire receiver cannot be found, manually fill in the IP AddressIP Address displayed in Wire's OSC preferences in the HostHost
field, and the Incoming PortIncoming Port number into the Send PortSend Port field.

Close the dialog and open any document configured to send OSC messages, such as the included example layout
Simple Simple Mk2Mk2.

Switch to control surface mode using the PlayPlay button in the toolbar.

Send a few OSC messages from TouchOSC to Wire by using any of the controls in the layout.

In Wire, expand the OSC Input log by pressing the button with the arrow pointing to the right in the top right corner
of the OSC preferences.

If everything is working, you should see the OSC messages sent from TouchOSC to Wire appear in the OSC Input log
and the basic configuration is complete.

Create OSC nodes ↑

Create a new Wire project and double-click on the empty project's background to open the node search window.

Enter OSCOSC to filter all nodes related to OSC communication.

Select OSC InOSC In to create an OSC input node.

Open the node search window again and create a Read OSCRead OSC node.

Connect the output of the OSC InOSC In node to the input of the Read OSCRead OSC node.

In the Read OSCRead OSC node's AddressAddress field, enter the OSC address that you want to receive.

If you've opened the Simple Mk2Simple Mk2 layout in the previous steps, enter /1/fader1.

Open the node search window once again, search for printprint and create a PrintPrint node.

https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/getting-started-midi
https://hexler.net/touchosc/manual/getting-started-osc
https://hexler.net/touchosc/manual/getting-started-live
https://hexler.net/touchosc/manual/setup-android-usb-midi
https://hexler.net/touchosc/manual/setup-resolume-wire
https://hexler.net/touchosc/manual/setup-steam-deck
https://hexler.net/touchosc/manual/setup-traktor
https://hexler.net/touchosc/manual/setup-logic
https://hexler.net/touchosc/manual/complete#top
https://developer.android.com/studio/debug/dev-options
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/connections-midi
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/protokol
https://www.resolume.com/software/wire
https://www.resolume.com/software/avenue_arena
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/connections-osc
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-01.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-02.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-03.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-04.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-05.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-06.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-07.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-08.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-09.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-10.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-11.jpg

Connect the Param 1Param 1 output of the Read OSCRead OSC node to the input of the PrintPrint node.

With this setup, the value of the first parameter of OSC messages with OSC address /1/fader1 sent to Wire will be
printed to the LogLog.

If you've opened the Simple Mk2Simple Mk2 layout in the previous steps, this will be a floating point value ranging from 0.0 to
1.0.

Print OSC messages ↑

With both the setup in TouchOSC and Wire now complete, let's open the LogLog view in Wire and confirm that the
values are being printed.

The LogLog view in Wire can be found in the LogLog tab in the panel to the top right of the window.

Send OSC messages from TouchOSC by using the fader control pictured below and you should see the received
values printed in the LogLog view in WireWire.

Starting with this basic patch, it should be easy to use the values received from TouchOSC in your own
compositions and visual effects.

Happy patching!Happy patching!

→ TouchOSC Manual

Setup · Steam Deck

Follow these steps to download, install and run TouchOSC on the Steam Deck.

Switch to Desktop Mode
Download TouchOSC
Extract TouchOSC
Launch TouchOSC

Switch to Desktop Mode ↑

Open the Steam MenuSteam Menu using the Steam ButtonSteam Button and select PowerPower.

In the following dialog select Switch to DesktopSwitch to Desktop.

The Steam Deck will now switch to Desktop ModeDesktop Mode.

Download TouchOSC ↑

Start the Firefox web browserFirefox web browser from the task bar at the bottom and navigate to the TouchOSC download section
located at https://hexler.net/touchosc#get.

In the DesktopDesktop section of the downloads, click the button labelled LINUXLINUX.

A pop-up dialog with all available versions for Linux will appear. Click the button labelled ZIPZIP in the section x86 /x86 /
64-bit64-bit.

The zip file will be downloaded to your DownloadsDownloads folder.

Open the file browserfile browser from the task bar at the bottom (or the downloads menu in Firefox) and select DownloadsDownloads in
the list of PlacesPlaces on the left.

Extract TouchOSC ↑

In the file browser double-click or tap the downloaded zip filedouble-click or tap the downloaded zip file and the archiving tool will launch and display the
contents of the zip archive.

Select the line that reads TouchOSCTouchOSC and click the ExtractExtract button in the top left.

In the dialog that appears there's no need to change anything, just click ExtractExtract again to unpack the TouchOSC
executable to your DownloadsDownloads folder.

Launch TouchOSC ↑

Back in the DownloadsDownloads folder in the file browser there is now a new file named TouchOSCTouchOSC.

Double-click or tapDouble-click or tap this file.

In the dialog prompting "What do you wish to do with this file?""What do you wish to do with this file?" choose ExecuteExecute.

The application should launch and the main TouchOSC window should appear - ready for some portable controlportable control
surface surface actionaction!

If you are new to TouchOSC please have a look at our Getting Started section.

If you are running into any problems following these steps, please do not hesitate to contact us ✉ and let us know!

→ TouchOSC Manual

Setup · Traktor

For the next generation of TouchOSC, Traktor wizard Andrew Norris has created the follow-up to his legendary Jog-
On layout.

Jog-On 2 is the essential control surface for Native Instruments' Traktor Pro software and is included with
TouchOSC and ready to go.

Downloads

Download the detailed manual and Traktor setup file below. The layout itself is included with the application on all
platforms.

 P D F M A N U A L  T R A K T O R T S I

Updates

v2.1 - 04 Mar 2024v2.1 - 04 Mar 2024

Stem Decks: volume, filter, or FX sends for all four individual Stem Tracks can now be controlled together
without having to switch between pages/tabs.
Added volume level meters for each individual Stem Track.
All volume level meters on all Decks now display individual L/R volume levels rather than L/R summed to
mono.
All volume level meters on all Decks now display ‘warning’ colour change when volume level approaches
peak.

v2.0 - 06 Jun 2021v2.0 - 06 Jun 2021

Complete redesign of the original Jog-On layout for TouchOSC.

Videos

A selection of videos by Andrew demonstrating and explaining the inner workings of the layout.

Watch on

Jungle / Jump-Up Mini Mix - TouchOSC & Traktor
Share

Watch on

Jog-On 2 for TouchOSC and Traktor - FX & Routing Demo
Share

Watch on

Jog-On 2 for TouchOSC and Traktor - Remix Decks Demo
Share

→ TouchOSC Manual

Setup · Logic Pro

Minimum required versionsMinimum required versions

Logic Pro 9.1.2 or higher

NoteNote: Make sure your computer and all mobile devices are on the same wireless network.

Adding TouchOSC as Control Surface in Logic

Start Logic 9.1.2 or higher.

Start TouchOSC and configure an OSC Connection as follows:
EnableEnable a connection and set TypeType to UDPUDP.

Click the BrowseBrowse button and select the name of the computer running Logic. The HostHost and Send PortSend Port fields
should now be filled in.

Enter a port number in the Receive PortReceive Port field (ie 7000).

Set the ZeroconfZeroconf option to LogicPadLogicPad or LogicTouchLogicTouch, depending on which of these two layouts you plan to
use.

Click DoneDone to apply the connections settings.

Logic will display the following alert:

Click the AddAdd button. Logic will add the device as a control surface and open the Control Surfaces Setup
window.

Note:Note: If you share the wireless network with other Logic systems, you may want to select the Don't show againDon't show again
check-box when adding your last TouchOSC device. This will prevent the dialog from appearing whenever other
users start their TouchOSC devices. You can reset this alert suppression by re-enabling New > AutomaticNew > Automatic
InstallationInstallation in the Control Surfaces Setup window.

Note:Note: If the macOS software firewall is enabled, an alert will come up when sending the first OSC message. You
will need to confirm the alert so that Logic can communicate with the OSC device.

Note:Note: It is not possible at this time to use customized Layouts or to learn OSC commands. However, authorized 3rd
party developers can create Logic CS plug-ins which can use OSC-based communication.

→ TouchOSC Manual

Scripting API

TouchOSC's scripting API is based on the Lua 5.1 language and virtual machine with custom additions and
modifications.

https://hexler.net/pub/touchosc/jog-on-2-manual.pdf
https://hexler.net/pub/touchosc/jog-on-2-tsi.zip
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-11.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-12.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-13.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-resolume-wire-04.jpg
https://www.steamdeck.com/
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/gfx/_docs/touchosc-mk2-setup-steam-deck-01.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-steam-deck-02.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-steam-deck-03.jpg
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc#get
https://hexler.net/gfx/_docs/touchosc-mk2-setup-steam-deck-04.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-steam-deck-05.jpg
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/gfx/_docs/touchosc-mk2-setup-steam-deck-06.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-steam-deck-07.jpg
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/gfx/_docs/touchosc-mk2-setup-steam-deck-08.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-steam-deck-09.jpg
https://hexler.net/gfx/_docs/touchosc-mk2-setup-steam-deck-10.jpg
https://hexler.net/touchosc/manual/getting-started
https://hexler.net/contact
https://andrewnorris.uk/
https://www.native-instruments.com/en/products/traktor/dj-software/traktor-pro-3/
https://hexler.net/touchosc/manual/connections-osc
https://www.lua.org/manual/5.1/

modifications.

Scripts can be added to all controls in a document and at the document root level. Each control's script will be
executed in its own Lua context.

Lua Functions
Global Functions

Utility
Message
JSON

Objects
Control
Messages
Rectangle
Color
Vectors

Enumerations
Constants
Properties & Values
Examples

→ TouchOSC Manual

Script · Lua Functions

The following Lua standard library functions are available.

base ↗
Only the following Lua base library functions are available:

error
ipairs
next
pairs
print
select
tonumber
tostring
unpack
type

string ↗
All standard Lua string library functions are available.

table ↗
All standard Lua table library functions are available plus the following additions:

table.pack(...)

Returns a new sequential table created from the elements provided.

table.unpack(...)

Same as the Lua base library function unpack.

math ↗
All standard Lua math library functions are available plus the following additions:

math.clamp(number, number, number)

Returns min(max(x, minVal), maxVal) where x is the first parameter and minVal and maxVal the second and third
parameters.

os ↗
since 1.3.8.222

Only the following Lua os library functions are available:

clock
date
difftime
time

bit32 ↗
since 1.1.7.154

Support for bitwise operations has been back-ported from Lua 5.2. All functions are available inside the table bit32.

utf8 ↗
since 1.3.0.202

Basic support for UTF-8 encoding has been back-ported from Lua 5.3. All functions are available inside the table
utf8.

→ TouchOSC Manual

Script · Global Functions

TouchOSC provides the following global functions.

Utility Functions

getVersion
getMillis
getDate
hasAccelerometer
getAccelerometer
hasGyroscope
getGyroscope
getBatteryLevel
bytesToInt
bytesToFloat
vibrate

Message Functions

MIDI Messages
Simple OSC Messages
Complex OSC Messages
Bundled OSC Messages

JSON Functions

json.fromTable
json.toTable

Utility Functions ↑

function getVersion()

-- example
local t = getVersion()
print(table.unpack(t))
> 1 2 5 183 -- major minor patch build

Returns a list containing the application's version as major minor patch build number values.

function getMillis()

-- example
local n = getMillis()
print(n)
> 576970.847

Returns the number of milliseconds since application start.

function getDate()

-- example
local t = getDate()
print(table.unpack(t))
> 2023 10 31 32400 -- year month day tzd

Returns a list with the current local date's year month day tzd number values. tzd refers to the timezone
differential in seconds.

function getTime()

-- example
local t = getTime()
print(table.unpack(t))
> 10 11 37 893 -- hour minute second millisecond

Returns a list with the current local time's hour minute second millisecond number values.

function hasAccelerometer()

-- example
local b = hasAccelerometer()
print(b)
> true

Returns true if the host device provides an accelerometer sensor, false otherwise.

function getAccelerometer()

-- example
local t = getAccelerometer()
print(table.unpack(t))
> -8.925 0.134 4.078 -- x y z

Returns a list of three number values that are sampled from the host device's accelerometer sensor. If no
accelerometer sensor is available, the values will be all zero.

function hasGyroscope()

-- example
local b = hasGyroscope()
print(b)
> true

Returns true if the host device provides a gyroscope sensor, false otherwise.

function getGyroscope()

-- example
local t = getGyroscope()
print(table.unpack(t))
> -8.925 0.134 4.078 -- x y z

Returns a list of three number values that are sampled from the host device's gyroscope sensor. If no gyroscope
sensor is available, the values will be all zero.

function getBatteryLevel()

-- example
local n = getBatteryLevel()
print(n)
> 0.84

Returns the current battery charge level as a number ranging from 0.0 to 1.0 on mobile devices, 1.0 otherwise.

function bytesToInt(number, number, number, number)

-- example
local i = bytesToInt(0x4D,0x01,0x00,0x00)
print(i)
> 333

Returns a number that is the 32-bit integer representation created from the four byte number parameter values
given.

function bytesToFloat(number, number, number, number)

-- example
local f = bytesToFloat(0x00,0x00,0x99,0x42)
print(f)
> 76.5

Returns a number that is the 32-bit floating point representation created from the four byte number parameter
values.

function vibrate()

-- example
vibrate()

since 1.4.0.230

On devices that support it, a short vibration will be triggered. Has no effect otherwise.

Message Functions ↑

TouchOSC provides the following functions to send MIDI and OSC messages.

MIDI Messages ↑

function sendMIDI(table [, table])

-- example
sendMIDI({ 176, 0, 102 }) -- control change
sendMIDI({ 0xF0, 0x00, 0x01, 0xF7 }) -- system exclusive

Send a MIDI message on one or multiple configured connections.

The first argument table is a list of byte values that make up the MIDI message.

Starting with version 1.2.1.171 the function will process byte data for multiple messages and continue until either
the end of the list or an invalid MIDI message is encountered.

The optional second argument table is a list of boolean values that specify which connections to send the
message on. If the argument is omitted, the default is to broadcast the message on all configured connections. If
the list has fewer elements than the number of connections, the omitted elements default to false.

For more usage examples see the Sending MIDI Messages example.

Simple OSC Messages ↑

function sendOSC(string [, ... [, table]])

-- example
sendOSC('/1/fader1', 0.5)
sendOSC('/3/xy1', 0.25, 0.75)
sendOSC('/hello', 'world')

Send an OSC message on one or multiple configured connections.

string is the path of the OSC message to be sent.

The optional argument values ... will be auto-converted to boolean, float or string OSC types and added to the
OSC message as arguments.

NoteNote that argument values are never auto-converted to integer OSC types as scripts do not treat floating point
and integer numbers as separate types. Use the complex OSC message send function instead.

The optional last argument table is a list of boolean values that specify which connections to send the message
on. If the argument is omitted, the default is to broadcast the message on all configured connections. If the list has
fewer elements than the number of connections, the omitted elements default to false.

For more usage examples see the Sending OSC Messages example.

Complex OSC Messages ↑

function sendOSC(table [, table])

-- example
sendOSC(
 {
 '/complex',
 {
 { tag = 'i', value = 42 }, -- int
 { tag = 'f', value = 3.14159 }, -- float
 { tag = 's', value = 'Goodbye Cruel World' } -- string
 }
 }
)

Sends an OSC message on one or multiple configured connections.

The first argument table is a list that represents the OSC message to be sent, where the first element is the path
string of the message, and the second element is a list of argument tables with tag and value keys for each
argument:

{
 path,
 {
 { tag = 'argumentTypeTag', value = argumentValue },
 { tag = 'argumentTypeTag', value = argumentValue },
 { tag = 'argumentTypeTag', value = argumentValue },
 ...
 }
}

Each argument value will be converted to an OSC type according to the type tag provided:

TagTag OSC TypeOSC Type

T Boolean true

F Boolean false

N Nil

I Infinitum

i int32

h int64 since 1.1.3.141

f float32

d double since 1.1.3.141

s string

S symbol since 1.3.9.226

c ASCII character since 1.3.9.226

r 32 bit RGBA color since 1.3.9.226

m 4 byte MIDI message since 1.3.9.226

b blob

If the tag key is omitted, the value will be auto-converted the same way as when sending simple OSC messages.

The T F N and I types do not need a value to be specified.

The b OSC blob type expects the value to be a list of byte values making up the blob data.

The optional second argument table is a list of boolean values that specify which connections to send the
message on. If the argument is omitted, the default is to broadcast the message on all configured connections. If
the list has fewer elements than the number of connections, the omitted elements default to false.

For more usage examples see the Sending OSC Messages example.

Bundled OSC Messages ↑

function sendOSCBundle(table [, table])

-- example
sendOSCBundle(
 {
 { '/message1', { { tag = 'i', value = 1337 } } },
 { '/message2', { { tag = 'f', value = 2.71828 } } },
 { '/message3', { { tag = 's', value = 'Hello World' } } }
 }
)

since 1.3.7.218

Sends one or more OSC messages as a bundle on one or multiple configured connections.

The first argument table is a list of one or more OSC messages to be sent. The messages are in the same format as
described in Complex OSC Messages above.

The optional second argument table is a list of boolean values that specify which connections to send the
message on. If the argument is omitted, the default is to broadcast the message on all configured connections. If
the list has fewer elements than the number of connections, the omitted elements default to false.

For more usage examples see the Sending OSC Messages example.

JSON Functions ↑

TouchOSC provides the following functions to convert Lua tables to and from JSON encoded strings. All JSON
functions are provided inside the global table json.

function json.fromTable(table)

-- example
local t = { a = 123, b = 'hey', c = false, d = json.null }
local str = json.fromTable(t)

since 1.1.8.157

Convert a Lua table to a JSON encoded string. The special value json.null can be used to store a null value in the
Lua table.

The input table should either be a sequential list of values, which will be converted to the JSON array type, or a list
of key/value pairs, which will be converted to the JSON object type.

function json.toTable(string)

-- example
local str = '{ "a":123, "b":"hey", "c":false, "d":null }'
local t = json.toTable(str)

since 1.1.8.157

Parse a JSON encoded string and return the result as a Lua table. The JSON null value will be written to the output
table as the special value json.null.

→ TouchOSC Manual

Script · Objects

TouchOSC defines the following objects to represent its internal and native types.

Control
Messages
Rectangle
Color
Vectors

→ TouchOSC Manual

Script · Objects · Control

A control object represents a reference to a single control contained within a TouchOSC document.

Using this reference most of a control's properties and values can be queried and set. From within a control's script,
the self reference can be used to refer to the control's own fields and functions, the root reference (since 1.0.5.109)

can be used to refer to the document's root control.

Each control is assigned a unique IDID on creation that remains unchanged during and between application runs,
document save/load and editor network transfer.

All controls live in a document tree hierarchy starting at the document root. All controls except for the root have a
reference to a parentparent control, and some control types are containers for childchild controls.

During compilation each script will be checked for the definitions of any of the callback functions listed below,
which serve as the main customization points during the various stages of TouchOSC's processing of an application
frame.

Fields

ID
type
index
parent
children
properties
values
messages
pointers

Functions

getValueField
setValueField
getValueProperty
setValueProperty
notify
findByID
findByType
findAllByType
findByProperty
findAllByProperty
findByName
findAllByName

Callback Functions

init
update
onValueChanged
onPointer
onReceiveMIDI
onReceiveOSC
onReceiveGamepad
onReceiveNotify

Fields ↑

control.ID

-- example
local myID = self.ID
local parentID = self.parent.ID
print(myID == parentID)
> false

A unique ID string, generated when the control is created. It remains unchanged over a control's lifetime, during
document load/save and during editor network transmission.

control.type

-- example
local myType = self.type
print(myType == ControlType.BUTTON)
> true

Control type numeric constant, one of the ControlType enumeration values.

control.index

-- example
local myIndex = self.index
local parentIndex = self.parent.index

The control's position in its parent list of child controls, 1 to n for regular controls, 0 for the document root.

control.parent

-- example
local myParentControl = self.parent
local noParentControl = root.parent -- will be nil, root has no parent

https://hexler.net/touchosc/manual/script-functions-lua
https://hexler.net/touchosc/manual/script-functions-global
https://hexler.net/touchosc/manual/script-functions-global#utility
https://hexler.net/touchosc/manual/script-functions-global#message
https://hexler.net/touchosc/manual/script-functions-global#json
https://hexler.net/touchosc/manual/script-objects
https://hexler.net/touchosc/manual/script-objects-control
https://hexler.net/touchosc/manual/script-objects-messages
https://hexler.net/touchosc/manual/script-objects-rectangle
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/script-objects-vectors
https://hexler.net/touchosc/manual/script-enumerations
https://hexler.net/touchosc/manual/script-constants
https://hexler.net/touchosc/manual/script-properties-and-values
https://hexler.net/touchosc/manual/script-examples
https://www.lua.org/manual/5.1/manual.html#5.1
https://www.lua.org/manual/5.1/manual.html#5.4
https://www.lua.org/manual/5.1/manual.html#5.5
https://www.lua.org/manual/5.1/manual.html#5.6
https://www.lua.org/manual/5.1/manual.html#5.8
https://www.lua.org/manual/5.2/manual.html#6.7
https://www.lua.org/manual/5.3/manual.html#6.5
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-examples#sending-midi-messages
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-examples#sending-osc-messages
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-examples#sending-osc-messages
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-examples#sending-osc-messages
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-objects-control
https://hexler.net/touchosc/manual/script-objects-messages
https://hexler.net/touchosc/manual/script-objects-rectangle
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/script-objects-vectors
https://hexler.net/touchosc/manual/script-properties-and-values
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-enumerations#controltype

A reference to the control's parent Control object, or nil for the document root.

control.children

-- example
self.children.button1.visible = false -- set 'visible' property on child 'button1'
self.children['button1'].visible = false -- same as the previous line
local firstChild = self.children[1] -- first child control
local secondChild = self.children[2] -- second child control
print(#self.children) -- print the number of child controls

A list of the control's child Control objects. The list can be indexed by control name (a string) or index (a number).
Control names are user assignable and notnot unique.

UsageUsage DescriptionDescription

control.children.name
control.children[name]

Returns the first child control with name name or nil if none is found. Indexing
by name is equivalent to calling control:findByName(name).

control.children[1 to n] Returns the child control at index 1 to n or nil if none is found.

#control.children Returns the number of child controls.

control.properties

-- example
self.properties.name = 'new_name'
self.properties['name'] = 'new_name' -- same as the previous line
self.name = 'new_name' -- same as the previous line
self.frame.x = 10
self.color = Color(1,0,0)
self.color.r = 0
print(#self.properties) -- print the number of properties

A list of the control's properties. The list can be indexed by property name (a string) or index (a number). Property
names are unique.

UsageUsage DescriptionDescription

control.properties.name
control.properties[name]

Returns the current value of the property with name name or nil if none is
found.

control.properties[1 to n]

Returns the current value of the property at index 1 to n or nil if none is
found.

Since version 1.2.6.185 the list is always ordered alphabetically by property
name. Earlier versions do not guarantee any particular order.

control.properties.keys Returns a list of all property names for the control in alphabetical order.

#control.properties Returns the number of properties in the list.

NOTENOTE For convenience, indexing a control reference directly using control.name or control[name], where name is
not one of the field or function names listed here, will implicitly index the control's property list with
control.properties[name].

Therefore control.color and control.properties.color will refer to the same property value.

See Control Properties and Values for a list of possible properties for each control type.

control.values

-- example
self.values.x = 1
self.values['x'] = 1 -- same as the previous line
print(#self.values) -- print the number of values

A list of the control's values. The list can be indexed by value name (a string) or index (a number). Value names are
unique.

UsageUsage DescriptionDescription

control.values.name
control.values[name]

Returns the current value of the control value with name name or nil if none is
found.

control.values[1 to
n]

Returns the current value of the value at index 1 to n or nil if none is found.

Since version 1.2.6.185 the list is always ordered alphabetically by value name, with
the value named touch always at the end of the list. Earlier versions do not
guarantee any particular order.

control.values.keys
Returns a list of all value names for the control in alphabetical order with the value
name touch always at the end of the list.

#control.values Returns the number of values in the list.

See Control Properties and Values for a list of possible values for each control type.

control.messages

-- example
local midiMessages = self.messages.MIDI -- same as: self.messages[1]
local oscMessages = self.messages.OSC -- same as: self.messages[2]
local localMessages = self.messages.LOCAL -- same as: self.messages[3]
local gamepadMessages = self.messages.GAMEPAD -- same: as self.messages[4]
print(#self.messages)
> 4

since 1.2.6.185

A list of the control's messages, containing separate lists for each message type. The list can be indexed by

message type name (a string): MIDI, OSC, LOCAL, GAMEPAD
index (a number): 1 - 4

The messages in each of the lists will be in the same order as they are displayed in the editor UI.

See Script · Objects · Messages for a description of the four message object types.

control.pointers

-- example
local pointer = self.pointers[1]
print(pointer.ID,
 pointer.x, pointer.y,
 pointer.state,
 pointer.created, pointer.modified)
> 0 33.285 20.393 1 1836924.838 1836914.867

A list containing one table for each pointer currently associated with the control during the current frame with the
following table keys per pointer:

KeyKey DescriptionDescription

ID The numeric ID of the pointer. Constant during the pointers' lifetime.

x The x position of the pointer.

y The y position of the pointer.

state The current state of the pointer, one of the possible values of the PointerState enumeration.

created The time the pointer event began, in milliseconds as returned by the getMillis global function.

modified
The time of the last modification of this pointer, in milliseconds as returned by the getMillis
global function.

Each pointer progresses through the states in the PointerState enumeration during its lifetime:

After being created the pointer will be in state PointerState.BEGIN for one frame.
During its lifetime the pointer will be either in state PointerState.ACTIVE or PointerState.MOVE depending
on whether the pointer's position has changed since the last frame.
When the pointer event ends it will be in state PointerState.END for one frame and will then be removed
from the list of pointers.

See Control Callback Functions for more pointer example use.

Functions ↑

function getValueField(string, field)

-- example
self:getValueField('x', ValueField.CURRENT) -- same as: self.values.x
self:getValueField('x', ValueField.DEFAULT)

Returns a value field of the control value with name string, or nil if none is found.

The parameter field can be one of the possible values of the ValueField enumeration and determines which value
is returned:

ValueField.CURRENT - Returns the current value.
ValueField.LAST - Returns the value before the last change.
ValueField.DEFAULT - Returns the default value.

Invoking the function with field parameter ValueField.CURRENT is equivalent to referencing
control.values[string].

See Control Properties and Values for a list of possible values for each control type.

function setValueField(string, field, value)

-- example
self:setValueField('x', ValueField.CURRENT, 1.0) -- same as: self.values.x = 1.0
self:setValueField('x', ValueField.DEFAULT, 0.5)

since 1.0.5.109

Set a value field of the control value with name string.

The parameter field can be one of the following values of the ValueField enumeration, and determines which
value field will be set:

ValueField.CURRENT - Set the current value.
ValueField.DEFAULT - Set the default value.

Invoking the function with field parameter ValueField.CURRENT is equivalent to calling control.values[string]
= value.

function getValueProperty(string, property)

-- example
local valueLocked = self:getValueProperty('x', ValueProperty.LOCKED)
local valueType = self:getValueProperty('x', ValueProperty.TYPE)
print(valueType == ValueType.FLOAT)
> true

Returns the value of the property property of the control value with name string, or nil if none is found.

The parameter property can be one of the possible values of the ValueProperty enumeration and determines
which property value is returned:

ValueProperty.TYPE - The type of the value, one of the possible values of the ValueType enumeration
ValueProperty.LOCKED - Locked state of the value, a boolean value
ValueProperty.LOCKED_DEFAULT_CURRENT - Default and current value locked state, a boolean value
ValueProperty.DEFAULT_PULL - Default pull of the value, an integer value ranging from 0 to 100

See Control Properties and Values for a list of possible values for each control type.

function setValueProperty(string, property, value)

-- example
self:setValueProperty('x', ValueProperty.LOCKED, false)
self:setValueProperty('x', ValueProperty.DEFAULT_PULL, 50)

Set the value of the property property of the control value with name string.

The parameter property can be one of the possible values of the ValueProperty enumeration with the exception of
ValueProperty.TYPE and determines which property value is set.

See the getValueProperty function above for a description of the possible value properties.

See Control Properties and Values for a list of possible values for each control type.

function notify(string [, value])

-- example
self.parent:notify('hello parent')
self.children.button1:notify('hello child', self.name)
self.children.button2:notify('hello child', 1.5)

Invokes the onReceiveNotify callback function on another control.

The parameter string and an optional parameter value will be copied to the receiving control's Lua context and
passed to the onReceiveNotify callback function, only if that callback function is defined in the receiving control's
script. Calling the function on self has no effect.

The optional parameter value can be of type boolean, number, string, table or any of TouchOSC's object types.

Please note that because the parameter values have to be copied between Lua execution contexts and because
this introduces overhead, it is advisable not to invoke the notify function from inside the update function every
frame.

function findByID(string [, boolean])

-- example
local buttonID = self.children.button1.ID
local childButton = self:findByID(buttonID)

Returns the child Control object with ID string or nil if none is found. The optional boolean parameter determines
if the search will be recursive and descend the child control hierarchy, defaults to false.

function findByType(controltype [, boolean])

-- example
local firstChildButton = self:findByType(ControlType.BUTTON)
local firstChildFader = self:findByType(ControlType.FADER)

since 1.0.2.98

Returns the first child Control object whose type matches controltype or nil if none is found. The controltype
parameter can be any of the ControlType enumeration values. The optional boolean parameter determines if the
search will be recursive and descend the child control hierarchy, defaults to false.

function findAllByType(controltype [, boolean])

-- example
local allChildButtons = self:findAllByType(ControlType.BUTTON)
local allChildFaders = self:findAllByType(ControlType.FADER)

since 1.0.2.98

Returns a list of child Control objects whose types match controltype or an empty list if none are found. The
controltype parameter can be any of the ControlType enumeration values. The optional boolean parameter
determines if the search will be recursive and descend the child control hierarchy, defaults to false.

function findByProperty(string, value [, boolean])

-- example
local firstRedControl = self:findByProperty('color', Color(1,0,0))
local firstHiddenControl = self:findByProperty('visible', false)

since 1.0.2.98

Returns the first child Control object whose current value of the property named string matches the provided
value or nil if none is found. The optional boolean parameter determines if the search will be recursive and
descend the child control hierarchy, defaults to false.

function findAllByProperty(string, value [, boolean])

-- example
local allRedControls = self:findAllByProperty('color', Color(1,0,0))
local allHiddenControls = self:findAllByProperty('visible', false)

since 1.0.2.98

Returns a list of child Control objects whose current values of the property named string matches the provided
value or an empty list if none are found. The optional boolean parameter determines if the search will be recursive
and descend the child control hierarchy, defaults to false.

function findByName(string [, boolean])

-- example
local childButton1 = self:findByName('button1') -- same as: self.children.button1
local childFader1 = self:findByName('fader1') -- same as: self.children.fader1

Equivalent to calling findByProperty('name', string [, boolean]).

function findAllByName(string [, boolean])

-- example
local allChildrenNamedA = self:findAllByName('A')

Equivalent to calling findAllByProperty('name', string [, boolean]).

Callback Functions ↑

If any of the following functions are defined in a control's script, these callback functions are invoked during the
various stages of processing of an application frame.

When considering a script function for registration as a callback, the parameter declarations are optional and the
function will be called regardless of the parameters being omitted or not.

See Control Callback Functions for example implementations.

function init()

-- example
function init()
 print("init")
end

since 1.0.8.122

Called once when the application transitions from editing mode to control surface mode.

NoteNote that this function might be called again under certain conditions:

When the application comes back to the foreground after being suspended on a mobile device
When the application is running as editor network client and receives updates from the server that
significantly change the structure of the local document

function update()

-- example
function update()
 print("Elapsed ms:", getMillis())
end

Called once per application frame afterafter all processing of user input and received messages has completed.

function onValueChanged(string)

-- example
function onValueChanged(valueName)
 print("Value of ", valueName, "has changed to", self.values[valueName])
end

Called afterafter any of the control's values have changed, once for each changed value, and beforebefore any further
processing as a result of the change.

The parameter string is the name of the value that has changed. It is valid to set the changed value again from
inside the callback, but note that the callback will notnot be invoked again as a result.

Returning true from this callback will end any further processing TouchOSC would normally do as a result of the
change (ie sending of messages).

function onPointer(table)

-- example
function onPointer(pointers)
 print('onPointer')
 for i=1,#pointers do
 local pointer = pointers[i]
 print('\t', pointer.ID,
 pointer.x, pointer.y,
 pointer.state,
 pointer.created, pointer.modified)
 end
end

Called afterafter processing of user input is complete and all active pointers (mouse cursor or touch input) have been
mapped and assigned to any controls, and beforebefore any further processing of the pointer state and internal control
behavior in response to the pointer input is evaluated.

Will only be invoked if there are any pointers associated with the control during the current frame.

The table passed as parameter to the callback contains a list of one or more pointers that have been selected as
the significant event input according to the control's configuration and do not necessarily include allall pointers
currently associated with the control.

For example, a button type control will commonly only be interested in a single significant touch input, which will
be selected by the application and passed to the control for processing based on the control's configuration.

To access allall pointers currently associated with a control access the control.pointers field.

Returning true from this callback will end any further processing TouchOSC would normally do for the current
control as a result of the input (ie changing a control's values).

For a description of the pointer table format and pointer states see the control.pointers field.

function onReceiveMIDI(message, connections)

-- example
function onReceiveMIDI(message, connections)
 print('onReceiveMIDI')
 print('\t message =', table.unpack(message))
 print('\t connections =', table.unpack(connections))
end

Called afterafter receiving a MIDI message and determining that the control should be a receiver of the message
according to the routing table, and beforebefore any further evaluation or processing of potential changes to a control's
values or properties.

Returning true from this callback will end any further processing TouchOSC would normally do for the current
control as a result of receiving the message (ie changing a control's values or properties).

NOTENOTE If it is defined, the document root's onReceiveMIDI callback function will always be invoked first, and if true
is returned from that callback, processing of the message will end, it will not be passed along to any other controls
in the routing table and no further callbacks will be invoked.

For the format of the message and connections parameters see the sendMIDI function.

function onReceiveOSC(message, connections)

-- example
function onReceiveOSC(message, connections)
 print('onReceiveOSC')
 local path = message[1]
 local arguments = message[2]
 print('\t path =', path)
 for i=1,#arguments do
 print('\t argument =', arguments[i].tag, arguments[i].value)
 end
 print('\t connections =', table.unpack(connections))
end

Called afterafter receiving an OSC message and determining that the control should be a receiver of the message
according to the routing table, and beforebefore any further evaluation or processing of potential changes to a control's
values or properties.

Returning true from this callback will end any further processing TouchOSC would normally do for the current
control as a result of receiving the message (ie changing a control's values or properties).

NOTENOTE If it is defined, the document root's onReceiveOSC callback function will always be invoked first, and if true is
returned from that callback, processing of the message will end, it will not be passed along to any other controls in
the routing table and no further callbacks will be invoked.

For the format of the message and connections parameters see the sendOSC function for complex messages.

function onReceiveGamepad(input, value, connections)

-- example
function onReceiveGamepad(input, value, connections)
 print('onReceiveGamepad')
 print('\t input =', input) -- one of the GamepadInput enumeration values
 print('\t value =', value)
 print('\t connections =', table.unpack(connections))
end

since 1.1.0.132

Called afterafter receiving input from a connected game controller and determining that the control should be a
receiver of the input according to the routing table, and beforebefore any further evaluation or processing of potential
changes to a control's values or properties.

Returning true from this callback will end any further processing TouchOSC would normally do for the current
control as a result of receiving the input (ie changing a control's values or properties).

NOTENOTE If it is defined, the document root's onReceiveGamepad callback function will always be invoked first, and if
true is returned from that callback, processing of the message will end, it will not be passed along to any other
controls in the routing table and no further callbacks will be invoked.

The first parameter input will be one of the possible values of the GamepadInput enumeration.

The second parameter value will be the raw, numeric value as received by the game controller.

See the Control Callback Functions sample script for an example of how to handle game controller messages.

function onReceiveNotify(string [, value])

-- example
function onReceiveNotify(key, value)
 print('onReceiveNotify')
 print('\t key =', key)
 print('\t value =', value)
end

Called as a result of the control's notify function being called by another control.

The parameters string and an optional value will be copied from the calling control's Lua context to the receiving
control's Lua context and passed as parameters to the callback function.

Please note that because the parameter values have to be copied between Lua execution contexts and because
this introduces overhead, it is advisable not to invoke the notify function from inside the update function every
frame.

→ TouchOSC Manual

Script · Objects · Messages

Script objects representing the different types of messages associated with a control.

The objects representing the different message types described here can be accessed via a control's messages
field.

MIDIMessage

Fields

enabled
send
receive
feedback
noDuplicates
connections

Functions

trigger
data

OSCMessage

Fields

enabled
send
receive
feedback
noDuplicates
connections

Functions

trigger
data

LocalMessage

Fields

enabled

Functions

trigger

GamePadMessage

Fields

enabled
connections

MIDIMessage ↑

An object representing a single MIDI message in a control's list of MIDI messages.

Fields ↑

The following fields allow to dynamically configure some of the same properties that are available in the editor UI.

https://hexler.net/touchosc/manual/script-properties-and-values
https://hexler.net/touchosc/manual/script-properties-and-values
https://hexler.net/touchosc/manual/script-objects-messages
https://hexler.net/touchosc/manual/script-enumerations#pointerstate
https://hexler.net/touchosc/manual/script-functions-global#getmillis
https://hexler.net/touchosc/manual/script-functions-global#getmillis
https://hexler.net/touchosc/manual/script-enumerations#pointerstate
https://hexler.net/touchosc/manual/script-examples#control-callback-functions
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-enumerations#valuefield
https://hexler.net/touchosc/manual/script-properties-and-values
https://hexler.net/touchosc/manual/script-enumerations#valuefield
https://hexler.net/touchosc/manual/script-enumerations#valueproperty
https://hexler.net/touchosc/manual/script-enumerations#valuetype
https://hexler.net/touchosc/manual/script-properties-and-values
https://hexler.net/touchosc/manual/script-enumerations#valueproperty
https://hexler.net/touchosc/manual/script-properties-and-values
https://hexler.net/touchosc/manual/script-objects
https://hexler.net/touchosc/manual/script-enumerations#controltype
https://hexler.net/touchosc/manual/script-enumerations#controltype
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-examples#control-callback-functions
https://hexler.net/touchosc/manual/editor-network
https://hexler.net/touchosc/manual/script-functions-global#midi-messages
https://hexler.net/touchosc/manual/script-functions-global#complex-osc-messages
https://hexler.net/touchosc/manual/script-enumerations#gamepadinput
https://hexler.net/touchosc/manual/script-examples#control-callback-functions
https://hexler.net/touchosc/manual/script-objects-control#fields-messages
https://hexler.net/touchosc/manual/complete#gamepad-message-fields
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-midi
https://hexler.net/touchosc/manual/script-objects-control#fields-messages
https://hexler.net/touchosc/manual/complete#top

message.enabled

-- example
self.messages.MIDI[1].enabled = false

since 1.2.6.185

A boolean value. Enable or disable the message.

See Editor · Messages · MIDI.

message.send

-- example
self.messages.MIDI[1].send = false

since 1.2.6.185

A boolean value. Enable or disable the sending of the message.

See Editor · Messages · MIDI.

message.receive

-- example
self.messages.MIDI[1].receive = false

since 1.2.6.185

A boolean value. Enable or disable the receiving of the message.

See Editor · Messages · MIDI.

message.feedback

-- example
self.messages.MIDI[1].feedback = false

since 1.2.6.185

A boolean value. Enable or disable allowing message feedback (sending) immediately after receiving.

See Editor · Messages · MIDI.

message.noDuplicates

-- example
self.messages.MIDI[1].noDuplicates = true

since 1.3.5.212

A boolean value. Enable or disable allowing identical messages to be sent in succession.

See Editor · Messages · MIDI.

message.connections

-- example
local firstMessage = self.messages.MIDI[1]
firstMessage.connections[1] = false
firstMessage.connections[3] = true
print(#firstMessage.connections)
> 5

since 1.2.6.185

A list of boolean values for each of the connections the message should be sent or received on.

This list currently has ten entries, but the number is subject to change in a future release and will always be the
same number as connections available in the MIDI connection configuration.

See Editor · Messages · MIDI.

Functions ↑

message:trigger()

-- example
self.messages.MIDI[1]:trigger()

since 1.2.9.200

Trigger and potentially send the message.

Process the message in the same way as if one of its configured triggers had been set. If both the Enabled and Send
fields of the message are enabled, the message will be sent on its configured connections.

Note that the No Duplicates flag might still prevent the sending of the message.

See Editor · Messages · MIDI.

since 1.2.9.200

Return the message data prepared for sending.

Process the message based on its current configuration and return the message data in the format used by the
sendMIDI and onReceiveMIDI functions (ie a list of byte values making up the MIDI message).

Note:Note: The Enabled and Send fields will not be considered.

See Script · Global Functions · MIDI Messages.

OSCMessage ↑

An object representing a single OSC message in a control's list of OSC messages.

Fields ↑

The following fields allow to dynamically configure some of the same properties that are available in the editor UI.

message.enabled

-- example
self.messages.OSC[1].enabled = false

since 1.2.6.185

A boolean value. Enable or disable the message.

See Editor · Messages · OSC.

message.send

-- example
self.messages.OSC[1].send = false

since 1.2.6.185

A boolean value. Enable or disable the sending of the message.

See Editor · Messages · OSC.

message.receive

-- example
self.messages.OSC[1].receive = false

since 1.2.6.185

A boolean value. Enable or disable the receiving of the message.

See Editor · Messages · OSC.

message.feedback

-- example
self.messages.OSC[1].feedback = false

since 1.2.6.185

A boolean value. Enable or disable allowing message feedback (sending) immediately after receiving.

See Editor · Messages · OSC.

message.noDuplicates

-- example
self.messages.OSC[1].noDuplicates = true

since 1.3.5.212

A boolean value. Enable or disable allowing identical messages to be sent in succession.

See Editor · Messages · OSC.

message.connections

-- example
local firstMessage = self.messages.OSC[1]
firstMessage.connections[1] = false
firstMessage.connections[3] = true
print(#firstMessage.connections)
> 5

since 1.2.6.185

A list of boolean values for each of the connections the message should be sent or received on.

This list currently has ten entries, but the number is subject to change in a future release and will always be the
same number as connections available in the OSC connection configuration.

See Editor · Messages · OSC.

Functions ↑

message:trigger()

-- example
self.messages.OSC[1]:trigger()

since 1.2.9.200

Trigger and potentially send the message.

Process the message in the same way as if one of its configured triggers had been set. If both the Enabled and Send
fields of the message are enabled, the message will be sent on its configured connections.

Note that the No Duplicates flag might still prevent the sending of the message.

See Editor · Messages · OSC.

since 1.2.9.200

Return the message data prepared for sending.

Process the message based on its current configuration and return the message data in the format used by the
sendOSC and onReceiveOSC functions.

Note:Note: The Enabled and Send fields will not be considered.

See Script · Global Functions · OSC Messages.

LocalMessage ↑

An object representing a single Local message in a control's list of Local messages.

Fields ↑

The following fields allow to dynamically configure some of the same properties that are available in the editor UI.

message.enabled

-- example
self.messages.LOCAL[1].enabled = false

since 1.2.6.185

A boolean value. Enable or disable the message.

See Editor · Messages · Local.

Functions ↑

message:trigger()

-- example
self.messages.LOCAL[1]:trigger()

since 1.2.9.200

Trigger and potentially send the message.

Process the message in the same way as if one of its configured triggers had been set. If the Enabled field of the
message is enabled, the message will be sent.

See Editor · Messages · LOCAL.

GamePadMessage ↑

An object representing a single Gamepad message in a control's list of Gamepad messages.

The following fields allow to dynamically configure some of the same properties that are available in the editor UI.

message.enabled

-- example
self.messages.GAMEPAD[1].enabled = false

since 1.2.6.185

A boolean value. Enable or disable the message.

See Editor · Messages · Gamepad.

message.connections

-- example
local firstMessage = self.messages.GAMEPAD[1]
firstMessage.connections[1] = false
firstMessage.connections[3] = true
print(#firstMessage.connections)
> 4

since 1.2.6.185

A list of boolean values for each of the connections the message received on.

This list currently has four entries, but the number is subject to change in a future release and will always be the
same number as connections available in the Gamepad connection configuration.

See Editor · Messages · Gamepad.

→ TouchOSC Manual

Script · Objects · Rectangle

A rectangle object native to TouchOSC. Will be returned and can be passed anywhere a rectangle is required.

Fields
Constructor Functions
Functions

Fields ↑

rectangle.x

The x position of the rectangle.

rectangle.y

The y position of the rectangle.

rectangle.w

The width of the rectangle.

rectangle.h

The height of the rectangle.

Constructor Functions ↑

function Rectangle() -- [1]
function Rectangle(rectangle) -- [2]
function Rectangle(number, number) -- [3]
function Rectangle(number, number, number, number) -- [4]

Returns a new rectangle object with

1. position and size set to (0,0).
2. position and size copied from another Rectangle object.
3. position set to (0,0) and size set to the two numbers.
4. position set to the first pair of numbers and size set to the second two numbers.

Functions ↑

function contains(number, number)

-- example
local r = Rectangle(10,10,50,50)
local b = r:contains(20,20)
print(b)
> true

Tests if the point at position (number, number) is contained within the rectangle and returns a boolean value.

→ TouchOSC Manual

Script · Objects · Color

A color object native to TouchOSC. Will be returned and can be passed anywhere a color is required. Color
components are stored as floating point values ranging from 0.0 to 1.0.

Fields
Constructor Functions
Static Functions
Operators

Fields ↑

color.r

The red component of the color.

color.g

The green component of the color.

color.b

The blue component of the color.

color.a

The alpha component of the color.

Constructor Functions ↑

function Color() -- [1]
function Color(color) -- [2]
function Color(number) -- [3]
function Color(number, number) -- [4]
function Color(number, number, number) -- [5]
function Color(number, number, number, number) -- [6]

Returns a new color object with

1. all components initialized with 0.0.
2. all components copied from another Color object.
3. all components initialized with number.
4. rgb components initialized with the first number, the a component initialized with the second number.
5. rgb components initialized with the three numbers, the a component initialized with 1.0
6. rgba components initialized with the four numbers provided.

Static functions ↑

function Color.toHexString(color)

-- example
local redColor = Color(1,0,0)
print(Color.toHexString(redColor))
> FF0000FF

Returns a hexadecimal string representation of the color in the format RRGGBBAA.

function Color.fromHexString(string)

-- example
local red = Color.fromHexString('FF0000FF')
local blue = cColor.fromHexString('0000FF')
local grayAlpha = Color.fromHexString('FF80');
local gray = Color.fromHexString('80');

Returns a color object created from the hexadecimal string representation. The string can be in one of the following
formats: RRGGBBAA, RRGGBB, GGAA, GG, with the latter two forms creating a grayscale color from the GG value.

Operators ↑

-- multiplication
color * color
color * number

-- division
color / color
color / number

-- addition
color + color
color + number

-- subtraction
color - color
color - number

All operators operate component-wise and return a new color object.

→ TouchOSC Manual

Script · Objects · Vectors

TouchOSC provides 2,3 and 4 component vector types as Vec2 Vec3 Vec4 objects.

Fields
Constructor Functions
Functions
Operators

Fields ↑

vec2.x
vec3.x
vec4.x

The x component of the vector.

vec2.y
vec3.y
vec4.y

The y component of the vector.

vec3.z

message:data()

-- example
local message_data = self.messages.MIDI[1]:data()
sendMIDI(message_data) -- send on all connections
sendMIDI(message_data, {true, false, false, false, false}) -- send on first connection
sendMIDI(message_data, self.messages.MIDI[1].connections) -- send on message's configured connections

message:data()

-- example
local message_data = self.messages.OSC[1]:data()
sendOSC(message_data) -- send on all connections
sendOSC(message_data, {true, false, false, false, false}) -- send on first connection
sendOSC(message_data, self.messages.OSC[1].connections) -- send on message's configured connections

https://hexler.net/touchosc/manual/editor-messages-midi#enabled
https://hexler.net/touchosc/manual/editor-messages-midi#send
https://hexler.net/touchosc/manual/editor-messages-midi#receive
https://hexler.net/touchosc/manual/editor-messages-midi#feedback
https://hexler.net/touchosc/manual/editor-messages-midi#no-duplicates
https://hexler.net/touchosc/manual/connections-midi
https://hexler.net/touchosc/manual/editor-messages-midi#connections
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-midi
https://hexler.net/touchosc/manual/script-functions-global#midi-messages
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-osc
https://hexler.net/touchosc/manual/script-objects-control#fields-messages
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-osc#enabled
https://hexler.net/touchosc/manual/editor-messages-osc#send
https://hexler.net/touchosc/manual/editor-messages-osc#receive
https://hexler.net/touchosc/manual/editor-messages-osc#feedback
https://hexler.net/touchosc/manual/editor-messages-osc#feedback
https://hexler.net/touchosc/manual/connections-osc
https://hexler.net/touchosc/manual/editor-messages-osc#connections
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-osc
https://hexler.net/touchosc/manual/script-functions-global#complex-osc-messages
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-local
https://hexler.net/touchosc/manual/script-objects-control#fields-messages
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-local#enabled
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-local
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-messages-gamepad
https://hexler.net/touchosc/manual/script-objects-control#fields-messages
https://hexler.net/touchosc/manual/editor-messages-gamepad#enabled
https://hexler.net/touchosc/manual/connections-gamepad
https://hexler.net/touchosc/manual/editor-messages-gamepad#connections
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top

vec3.z
vec4.z

The z component of the vector.

vec4.w

The w component of the vector.

Constructor Functions ↑

function Vec2() -- [1]
function Vec2(vec2) -- [2]
function Vec2(number) -- [3]
function Vec2(number, number) -- [4]

function Vec3() -- [1]
function Vec3(vec3) -- [2]
function Vec3(number) -- [3]
function Vec3(number, number, number) -- [4]

function Vec4() -- [1]
function Vec4(vec4) -- [2]
function Vec4(number) -- [3]
function Vec4(number, number, number, number) -- [4]

Returns a new vector object with

1. all components initialized with 0.0.
2. all components copied from another vector object.
3. all components initialized with number.
4. each component initialized with the numbers provided.

Functions ↑

function length()

-- example
local v = Vec2(1,0)
local l = v:length()
print(l)
> 1

Returns the length of the vector

function normalize()

-- example
local v = Vec2(1,1)
local n = v:normalize()

Returns a new vector that is the normalized vector

Operators ↑

-- multiplication
vector * vector
vector * number

-- division
vector / vector
vector / number

-- addition
vector + vector
vector + number

-- subtraction
vector - vector
vector - number

All operators operate component-wise and return a new vector object.

→ TouchOSC Manual

Script · Enumerations

AlignH
AlignV
ButtonType
ControlType
CursorDisplay
Font
GamepadInput
MIDIMessageType
Orientation
OutlineStyle
PointerPriority
PointerState
RadioType
Response
Shape
ValueField
ValueProperty
ValueType

AlignH ↑

Possible values for a Control object's textAlignH property.

AlignH.LEFT
AlignH.CENTER
AlignH.RIGHT

AlignV ↑

Possible values for a Control object's textAlignV property.

AlignV.TOP
AlignV.MIDDLE
AlignV.BOTTOM

ButtonType ↑

Possible values for a Control object's buttonType property.

ButtonType.MOMENTARY
ButtonType.TOGGLE_RELEASE
ButtonType.TOGGLE_PRESS

ControlType ↑

Possible values for a Control object's type field.

ControlType.BOX
ControlType.BUTTON
ControlType.LABEL
ControlType.TEXT
ControlType.FADER
ControlType.XY
ControlType.RADIAL
ControlType.ENCODER
ControlType.RADAR
ControlType.RADIO
ControlType.GROUP
ControlType.PAGER
ControlType.GRID

CursorDisplay ↑

CursorDisplay.ALWAYS
CursorDisplay.ACTIVE
CursorDisplay.INACTIVE

Font ↑
since 1.0.4.106

Possible values for a Control object's font property.

Font.DEFAULT
Font.MONOSPACED

GamepadInput ↑
since 1.1.0.132

GamepadInput.STICK_LEFT_X
GamepadInput.STICK_LEFT_Y
GamepadInput.STICK_RIGHT_X
GamepadInput.STICK_RIGHT_Y
GamepadInput.TRIGGER_LEFT
GamepadInput.TRIGGER_RIGHT
GamepadInput.BUTTON_UP
GamepadInput.BUTTON_DOWN
GamepadInput.BUTTON_LEFT
GamepadInput.BUTTON_RIGHT
GamepadInput.BUTTON_A
GamepadInput.BUTTON_B
GamepadInput.BUTTON_X
GamepadInput.BUTTON_Y
GamepadInput.BUTTON_STICK_LEFT
GamepadInput.BUTTON_STICK_RIGHT
GamepadInput.BUMPER_LEFT
GamepadInput.BUMPER_RIGHT
GamepadInput.BUTTON_START
GamepadInput.BUTTON_SELECT
GamepadInput.BUTTON_HOME

MIDIMessageType

MIDIMessageType.NOTE_OFF
MIDIMessageType.NOTE_ON
MIDIMessageType.POLYPRESSURE
MIDIMessageType.CONTROLCHANGE
MIDIMessageType.PROGRAMCHANGE
MIDIMessageType.CHANNELPRESSURE
MIDIMessageType.PITCHBEND
MIDIMessageType.SYSTEMEXCLUSIVE
MIDIMessageType.QUARTERFRAME
MIDIMessageType.SONGPOSITION
MIDIMessageType.SONGSELECT
MIDIMessageType.CLOCK
MIDIMessageType.START
MIDIMessageType.CONTINUE
MIDIMessageType.STOP
MIDIMessageType.ACTIVESENSING
MIDIMessageType.SYSTEMRESET

Orientation ↑

Possible values for a Control object's orientation property.

Orientation.NORTH
Orientation.EAST
Orientation.SOUTH
Orientation.WEST

OutlineStyle ↑

Possible values for a Control object's outlineStyle property.

OutlineStyle.FULL
OutlineStyle.CORNERS
OutlineStyle.EDGES

PointerPriority ↑

PointerPriority.OLDEST
PointerPriority.NEWEST

PointerState ↑

PointerState.BEGIN
PointerState.ACTIVE
PointerState.MOVE
PointerState.END

RadioType ↑

Possible values for a Control object's radioType property.

RadioType.SELECT
RadioType.METER

Response ↑

Possible values for a Control object's response property.

Response.ABSOLUTE
Response.RELATIVE

Shape ↑

Possible values for a Control object's shape property.

Shape.RECTANGLE
Shape.CIRCLE
Shape.TRIANGLE
Shape.DIAMOND
Shape.PENTAGON
Shape.HEXAGON

ValueField ↑

ValueField.CURRENT
ValueField.LAST
ValueField.DEFAULT

ValueProperty ↑

ValueProperty.TYPE
ValueProperty.LOCKED
ValueProperty.LOCKED_DEFAULT_CURRENT
ValueProperty.DEFAULT_PULL

ValueType ↑

ValueType.BOOLEAN
ValueType.INTEGER
ValueType.FLOAT
ValueType.STRING

→ TouchOSC Manual

Script · Constants

Colors

Colors.clear
Colors.black
Colors.white
Colors.red
Colors.green
Colors.blue
Colors.orange
Colors.yellow
Colors.cyan
Colors.purple
Colors.violet
Colors.gray
Colors.darkGray
Colors.lightGray

→ TouchOSC Manual

Script · Properties and Values

In this reference we list the names and types of the properties and values for each control type, for access from
control scripts.

For a description of the meaning and effects of each property and value, please see the Properties, Values and
Control Reference sections.

Common
BOX
BUTTON
LABEL
TEXT
FADER
XY
RADIAL
ENCODER
RADAR
RADIO
PAGER

Common ↑

Properties and values that are common to all controls, independent of their type. Not all control types will utilize
the value of these properties.

Properties

NameName DescriptionDescription SinceSince

name A user-editable string.

tag A user-editable string. 1.0.2.98

frame A Rectangle object.

color A Color object.

visible A boolean value.

interactive A boolean value.

background A boolean value.

outline A boolean value.

outlineStyle One of the possible values of the OutlineStyle enumeration.

grabFocus A boolean value.

pointerPriority One of the possible values of the PointerPriority enumeration.

cornerRadius An integer number value ranging from 0 to 10

orientation One of the possible values of the Orientation enumeration.

script A string value. The control's script source code.

Values

NameName DescriptionDescription

touch
A boolean value. true if any pointers are associated with the control in the current frame, false
otherwise. For a control to be able to be associated with a pointer, its visible and interactive
properties have to both be true

BOX ↑

Properties

NameName DescriptionDescription

shape One of the possible values of the Shape enumeration

BUTTON ↑

Properties

NameName TypeType

shape One of the possible values of the Shape enumeration.

buttonType One of the possible values of the ButtonType enumeration.

press A boolean value.

release A boolean value.

valuePosition A boolean value.

Values

NameName DescriptionDescription

x A floating point value ranging from 0.0 to 1.0.

LABEL ↑

Properties

NameName TypeType SinceSince

font One of the possible values of the Font enumeration. 1.0.4.106

textSize An integer value.

textLength An integer value.

textAlignH One of the possible values of the AlignH enumeration.

textAlignV One of the possible values of the AlignV enumeration.

textColor A Color object.

textClip A boolean value.

Values

NameName DescriptionDescription

text A string value.

TEXT ↑

Properties

NameName TypeType SinceSince

font One of the possible values of the Font enumeration. 1.0.4.106

textSize An integer value.

textAlignH One of the possible values of the AlignH enumeration. 1.0.4.106

textAlignV One of the possible values of the AlignV enumeration. 1.2.1.171

textColor A Color object.

textClip A boolean value. 1.2.1.171

textWrap A boolean value. 1.2.1.171

Values

NameName DescriptionDescription

text A string value.

FADER ↑

Properties

NameName TypeType SinceSince

cursor A boolean value.

cursorDisplay One of the possible values of the CursorDisplay enumeration.

bar A boolean value.

barDisplay One of the possible values of the CursorDisplay enumeration.

centered A boolean value.

response One of the possible values of the Response enumeration.

responseFactor An integer value ranging from 1 to 100.

grid A boolean value.

gridSteps An integer value.

gridColor A Color object. 1.2.0.166

Values

NameName DescriptionDescription

x A floating point value ranging from 0.0 to 1.0.

XY ↑

Properties

https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/editor-control-properties
https://hexler.net/touchosc/manual/editor-control-values
https://hexler.net/touchosc/manual/controls
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-objects-rectangle
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/script-enumerations#outlinestyle
https://hexler.net/touchosc/manual/script-enumerations#pointerpriority
https://hexler.net/touchosc/manual/script-enumerations#orientation
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-enumerations#shape
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-enumerations#shape
https://hexler.net/touchosc/manual/script-enumerations#buttontype
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-enumerations#font
https://hexler.net/touchosc/manual/script-enumerations#alignh
https://hexler.net/touchosc/manual/script-enumerations#alignv
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-enumerations#font
https://hexler.net/touchosc/manual/script-enumerations#alignh
https://hexler.net/touchosc/manual/script-enumerations#alignv
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-enumerations#cursordisplay
https://hexler.net/touchosc/manual/script-enumerations#cursordisplay
https://hexler.net/touchosc/manual/script-enumerations#response
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/complete#top

Properties

NameName TypeType SinceSince

cursor A boolean value.

cursorDisplay One of the possible values of the CursorDisplay enumeration.

lines A boolean value.

linesDisplay One of the possible values of the CursorDisplay enumeration.

lockX A boolean value.

lockY A boolean value.

response One of the possible values of the Response enumeration.

responseFactor An integer value ranging from 1 to 100.

gridX A boolean value.

gridY A boolean value.

gridStepsX An integer value.

gridStepsY An integer value.

gridColor A Color object. 1.2.0.166

Values

NameName DescriptionDescription

x A floating point value ranging from 0.0 to 1.0.

y A floating point value ranging from 0.0 to 1.0.

RADIAL ↑

Properties

NameName TypeType SinceSince

inverted A boolean value.

centered A boolean value.

response One of the possible values of the Response enumeration.

responseFactor An integer value ranging from 1 to 100.

grid A boolean value.

gridSteps An integer value.

gridColor A Color object. 1.2.0.166

Values

NameName DescriptionDescription

x A floating point value ranging from 0.0 to 1.0.

ENCODER ↑

Properties

NameName TypeType SinceSince

cursor A boolean value.

cursorDisplay One of the possible values of the CursorDisplay enumeration.

response One of the possible values of the Response enumeration.

responseFactor An integer value ranging from 1 to 100.

grid A boolean value.

gridSteps An integer value.

gridColor A Color object. 1.2.0.166

Values

NameName DescriptionDescription

x A floating point value ranging from 0.0 to 1.0.

y A floating point value ranging from 0.0 to 1.0.

RADAR ↑

Properties

NameName TypeType SinceSince

cursor A boolean value.

cursorDisplay One of the possible values of the CursorDisplay enumeration.

lines A boolean value.

linesDisplay One of the possible values of the CursorDisplay enumeration.

lockX A boolean value.

lockY A boolean value.

gridX A boolean value.

gridY A boolean value.

gridStepsX An integer value.

gridStepsY An integer value.

gridColor A Color object. 1.2.0.166

Values

NameName DescriptionDescription

x A floating point value ranging from 0.0 to 1.0.

y A floating point value ranging from 0.0 to 1.0.

RADIO ↑

Properties

NameName TypeType

steps An integer value.

radioType One of the possible values of the RadioType enumeration.

Values

NameName DescriptionDescription

x An integer value ranging from 0 to the value of the steps property minus one.

PAGER ↑

Properties

NameName TypeType

tabbar A boolean value.

tabbarSize An integer value ranging from 10 to 300.

tabbarDoubleTap A boolean value.

tabLabels A boolean value.

textSizeOff An integer value.

textSizeOn An integer value.

Page Properties

NameName TypeType

tabLabel A string value.

tabColorOff A Color object.

tabColorOn A Color object.

textColorOff A Color object.

textColorOn A Color object.

Values

NameName DescriptionDescription

page An integer value ranging from 0 to the number of pages minus one.

→ TouchOSC Manual

Script · Examples

Control Callback Functions
Sending MIDI Messages
Sending OSC Messages
Control "Double-tap"
Send Periodic Message
Send Accelerometer Data
Snap Fader to Grid

Control Callback Functions ↑

The following script demonstrates all possible callback handlers during TouchOSC's processing of an application
frame and all associated events.

As the root level of a document will always be called first if it defines any of the following callback functions
(except for the onReceiveNotify callback), when getting started with the scripting API, we recommend setting this
script at the root level, in order to see all possible events being handled and printed to the log view.

Sending MIDI Messages ↑

Send MIDI messages on one or multiple connections.

For more information see the MIDI Messages script documentation.

-- control change, controller 0, channel 1
-- send on all configured connections
sendMIDI({ 176, 0, 102 })
sendMIDI({ MIDIMessageType.CONTROLCHANGE, 0, 102 })

-- control change, controller 0, channel 2
-- send on all configured connections
sendMIDI({ 177, 0, 103 })
sendMIDI({ MIDIMessageType.CONTROLCHANGE + 1, 0, 103 })

-- control change, controller 2, channel 6
-- send on all configured connections
sendMIDI({ 181, 2, 104 })
sendMIDI({ MIDIMessageType.CONTROLCHANGE + 5, 2, 104 })

-- send only on connections 1 and 2
sendMIDI({ MIDIMessageType.NOTE_ON, 12, 88 }, { true, true })
sendMIDI({ MIDIMessageType.NOTE_OFF, 12, 0 }, { true, true })

-- send only on connections 1 and 3
sendMIDI({ MIDIMessageType.NOTE_ON, 13, 88 }, { true, false, true })
sendMIDI({ MIDIMessageType.NOTE_OFF, 13, 0 }, { true, false, true })

-- send only on connections 1 and 5
sendMIDI({ MIDIMessageType.NOTE_ON, 14, 88 }, { true, false, false, false, true })
sendMIDI({ MIDIMessageType.NOTE_OFF, 14, 0 }, { true, false, false, false, true })

-- send system exlusive
sendMIDI({ 0xF0, 0x00, 0x01, 0xF7 })
sendMIDI({ MIDIMessageType.SYSTEMEXCLUSIVE, 0x00, 0x0D, 0xF7 })

Sending OSC Messages ↑

Send OSC messages on one or multiple connections.

Messages can either be sent using a simple format, where TouchOSC will auto-convert parameter types, or using a
complex format, where each parameter type can be specified using OSC protocol type-tags.

For more information see the Simple OSC Messages and Complex OSC Messages script documentation.

-- ---
-- Send simple OSC messages
--
-- arguments are auto-converted to
-- boolean, float or string (not integer!)
-- ---

-- send on all configured connections
sendOSC('/simple')
sendOSC('/ping', 'pong')
sendOSC('/on', true)
sendOSC('/1/fader1', 0.5)
sendOSC('/3/xy1', 0.25, 0.75)
sendOSC('/mixedarguments', 'Hello', 1, true, 'World')

-- send only on connections 1 and 2
sendOSC('/1/fader1', 0.5, { true, true })

-- send only on connections 1 and 3
sendOSC('/3/xy1', 0.25, 0.75, { true, false, true })

-- send only on connections 1 and 5
sendOSC('/mixedarguments', 'Hello', 1, true, 'World', { true, false, false, false, true })

-- ---
-- Send complex OSC messages
-- with argument type tags
-- ---

sendOSC(
 -- message
 {
 -- path
 '/complex',

 -- argument list
 {
 { tag = 'T' }, -- true
 { tag = 'F' }, -- false
 { tag = 'N' }, -- nil
 { tag = 'I' }, -- infinitum
 { tag = 'i', value = 42 }, -- int32
 { tag = 'h', value = 1337 }, -- int64
 { tag = 'f', value = 3.14159 }, -- float32
 { tag = 'd', value = 3.14159265358979 }, -- double
 { tag = 's', value = 'Goodbye Cruel World' }, -- string
 { tag = 'b', value = { 0xC0, 0x00, 0x10, 0xFF } } -- blob
 }
 },
 -- connections
 {
 true, -- 1
 true, -- 2
 true, -- 3
 true, -- 4
 true, -- 5
 true, -- 6
 true, -- 7
 true, -- 8
 true, -- 9
 true -- 10
 }
)

Control "Double-tap" ↑

Detect a "double-tap" on a control, with a certain maximum time passing between the taps.

local delay = 300 -- the maximum elapsed time between taps
local last = 0

function onValueChanged()
 if(not self.values.touch) then
 local now = getMillis()
 if(now - last < delay) then
 print('double tap!')
 last = 0
 else
 last = now
 end
 end
end

Send a Periodic Message ↑

Repeatedly send an OSC message, in this example once every second.

local delay = 1000 -- every 1000ms = 1s
local last = 0

function update()
 local now = getMillis()
 if(now - last > delay) then
 last = now
 sendOSC('/ping')
 end
end

Send Accelerometer Sensor Data ↑

Read data from the host device's accelerometer sensor (if available) and send as OSC message.

For more information see the documentation for the getAccelerometer utitlity function.

function update()
 local values = getAccelerometer()
 sendOSC('/accxyz', table.unpack(values))
end

Snap Fader to Grid ↑

Snap a fader's values to the configured grid line interval. Works for any control with a value of type FLOAT and a grid
steps property.

function onValueChanged(key)
 if(key ~= 'touch') then
 local steps = self.gridSteps - 1;
 self.values[key] =
 math.floor(steps * self.values[key] + .5) / steps
 end
end

H E X L E R

Products

News

About

S U P P O R T

Manuals

Search

Contact

L E G A L

Terms of Service

Privacy Policy

Cookie Policy

特定商取引法

Copyright © 2025 Hexler Limited. All rights reserved. v1.9.1.473        

function init()
 print('init')
end

function update()
 print('update')
end

function onPointer(pointers)
 print('onPointer')
 for i=1,#pointers do
 local pointer = pointers[i]
 print('\t', pointer.ID, pointer.x, pointer.y, pointer.state, pointer.created, pointer.modified)
 end
end

function onValueChanged(key)
 print('onValueChanged')
 print('\t', key, '=', self.values[key])
end

function onReceiveMIDI(message, connections)
 print('onReceiveMIDI')
 print('\t message =', table.unpack(message))
 print('\t connections =', table.unpack(connections))
end

function onReceiveOSC(message, connections)
 print('onReceiveOSC')
 local path = message[1]
 local arguments = message[2]
 print('\t path =', path)
 for i=1,#arguments do
 print('\t argument =', arguments[i].tag, arguments[i].value)
 end
 print('\t connections =', table.unpack(connections))
end

function onReceiveGamepad(input, value, connections)
 print('onReceiveGamepad')
 print('\t input =', input) -- one of the GamepadInput enumeration values
 print('\t value =', value)
 print('\t connections =', table.unpack(connections))
end

function onReceiveNotify(key, value)
 print('onReceiveNotify')
 print('\t key =', key)
 print('\t value =', value)
end

https://hexler.net/touchosc/manual/script-enumerations#cursordisplay
https://hexler.net/touchosc/manual/script-enumerations#cursordisplay
https://hexler.net/touchosc/manual/script-enumerations#response
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-enumerations#response
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-enumerations#cursordisplay
https://hexler.net/touchosc/manual/script-enumerations#response
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-enumerations#cursordisplay
https://hexler.net/touchosc/manual/script-enumerations#cursordisplay
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-enumerations#radiotype
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/script-objects-color
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-functions-global#midi-messages
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-functions-global#simple-osc-messages
https://hexler.net/touchosc/manual/script-functions-global#complex-osc-messages
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/touchosc/manual/script-functions-global#getaccelerometer
https://hexler.net/touchosc/manual/complete#top
https://hexler.net/products
https://hexler.net/news
https://hexler.net/about
https://hexler.net/support/manuals
https://hexler.net/search
https://hexler.net/contact
https://hexler.net/terms-of-service
https://hexler.net/privacy-policy
https://hexler.net/cookie-policy
https://hexler.net/commercial-law
https://www.facebook.com/hexler
https://www.instagram.com/hexler.heavy.industries
https://www.threads.net/@hexler.heavy.industries
https://twitter.com/hexler_net
https://vimeo.com/hexler
https://www.tiktok.com/@hexler.net
https://mastodon.social/@hexler
https://bsky.app/profile/hexler.bsky.social

